1
|
Xiao T, Jiang T, Wang Z, Yin X, Wei C, Jiang L, Xiang P, Ni S, Tao F, Tan X. Enhanced electrochemical performance of the cobalt chloride carbonate hydroxide hydrate via micromorphology and phase transformation. J Colloid Interface Sci 2022; 626:506-514. [PMID: 35809439 DOI: 10.1016/j.jcis.2022.06.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Micromorphology and conductivity are two vital factors for the practical capacitance of the electrode materials for supercapacitors. In this work, a novel two-step electrochemical activation method involving a cyclic voltammetry (CV) treatment within 0-0.7 V followed by a CV treatment within -1.2-0 V is explored to induce the micromorphology and phase transformation of the cobalt chloride carbonate hydroxide hydrate (CCCH) nanoneedle arrays. The first-step activation transforms the CCCH to Co(OH)2 and then the reversible transformation between Co(OH)2 and CoOOH generates plenty of pores in the sample, thereby increasing the specific capacitance from 0.54 to 1.74 F cm-2 at the current density of 10 mA cm-2. The second-step activation inducing the reversible transformation between Co(OH)2 and Co not only endows the final sample with a nanosheets-assembled fasciculate structure but also decreases the internal resistance via generating Co0 in the final sample (CCCH-P75N50). Consequently, the CCCH-P75N50 shows a high specific capacitance of 3.83 F cm-2 at the current density of 10 mA cm-2. Besides, the aqueous asymmetric supercapacitor assembled with CCCH-P75N50 and commercial conductive carbon cloth (CC) delivers a high energy density of 2.75 mWh cm-3 at a power density of 37.5 mW cm-3. This work provides a novel, facile and promising method to optimize the micromorphology and conductivity of Co-based electrodes.
Collapse
Affiliation(s)
- Ting Xiao
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Tao Jiang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zhixin Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Xingyu Yin
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chong Wei
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Lihua Jiang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Peng Xiang
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Shibing Ni
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Fujun Tao
- Department Chemistry, School of Biological and Chemical Sciences, University of Missouri - Kansas City, Kansas City, MO 64110, USA
| | - Xinyu Tan
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
2
|
Metallic Co: A promising electrode materials to boost electrochemical performances of Co3O4 for energy storage. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Wang J, Huang Y, Han X, Zhang S, Wang M, Yan J, Chen C, Zong M. Construction of hierarchical Co 9S 8@NiO synergistic microstructure for high-performance asymmetric supercapacitor. J Colloid Interface Sci 2021; 603:440-449. [PMID: 34197992 DOI: 10.1016/j.jcis.2021.06.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
Metal-organic frameworks (MOFs) become a research hot-spot owing to their unique properties originating from the ultra-high porosity and large specific surface area with highly accessible active sites. However, the electrochemical performance of a single component is unsatisfied when MOFs are applied as electrode material in a supercapacitor. In this work, the hierarchical hollow framework involving interconnected Co9S8 structure and NiO nanosheets (Co9S8@NiO) are successfully prepared by MOFs derived methods and proposed to electrode materials. As a result, the prepared Co9S8@NiO electrode materials exhibit a superior specific capacitance of 1627 F g-1 at a current density of 1 A g-1. Moreover, an assembled hybrid supercapacitor shows a high energy density of 51.65 Wh Kg-1 at a power density of 749.8 W Kg-1 as well as excellent long-term cycling stability with 81.79% capacity retention after 10,000 cycles. Meanwhile, we concluded that the marvelous electrochemical performance is closely associated with the unique structure of NiO, in particular, the nanosheet surface provides a superior specific surface area and rich accessible redox reaction sites, thus enlarged the contact between the surface and interface of the electrode material. Finally, two supercapacitor devices connected in series can light up four light-emitting diodes (LEDs) for about 30 min. Hence, the presented strategy represents a general route for supercapacitor electrode material with promising electrochemical performance, which can combine the MOFs template and other hierarchical nanosheets together.
Collapse
Affiliation(s)
- Jiaming Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ying Huang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaopeng Han
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shuai Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Mingyue Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jing Yan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chen Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meng Zong
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
4
|
Xu M, Sun M, Rehman SU, Ge K, Hu X, Ding H, Liu J, Bi H. One-pot synthesis of CoO–ZnO/rGO supported on Ni foam for high-performance hybrid supercapacitor with greatly enhanced cycling stability. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Liu W, Zhang Z, Zhang Y, Zheng Y, Liu N, Su J, Gao Y. Interior and Exterior Decoration of Transition Metal Oxide Through Cu 0/Cu + Co-Doping Strategy for High-Performance Supercapacitor. NANO-MICRO LETTERS 2021; 13:61. [PMID: 34138273 PMCID: PMC8187495 DOI: 10.1007/s40820-021-00590-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/20/2020] [Indexed: 05/26/2023]
Abstract
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance, the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity, poor structural stability and inefficient nanostructure. Herein, we report a novel Cu0/Cu+ co-doped CoO composite with adjustable metallic Cu0 and ion Cu+ via a facile strategy. Through interior (Cu+) and exterior (Cu0) decoration of CoO, the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+ co-doping, which results in a significantly enhanced specific capacitance (695 F g-1 at 1 A g-1) and high cyclic stability (93.4% retention over 10,000 cycles) than pristine CoO. Furthermore, this co-doping strategy is also applicable to other transition metal oxide (NiO) with enhanced electrochemical performance. In addition, an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+ co-doped CoO electrode and active carbon, which delivers a remarkable maximal energy density (35 Wh kg-1), exceptional power density (16 kW kg-1) and ultralong cycle life (91.5% retention over 10,000 cycles). Theoretical calculations further verify that the co-doping of Cu0/Cu+ can tune the electronic structure of CoO and improve the conductivity and electron transport. This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
Collapse
Affiliation(s)
- Weifeng Liu
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China
| | - Zhi Zhang
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China.
| | - Yanan Zhang
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China
| | - Yifan Zheng
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China
| | - Nishuang Liu
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China
| | - Jun Su
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China
| | - Yihua Gao
- Center for Nanoscale Characterization and Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, People's Republic of China.
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
6
|
Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Han X, Jiang T, Chen X, Jiang D, Xie K, Jiang Y, Wang Y. Electrolyte additive induced fast-charge/slow-discharge process: Potassium ferricyanide and potassium persulfate for CoO-based supercapacitors. J Colloid Interface Sci 2020; 576:505-513. [PMID: 32512403 DOI: 10.1016/j.jcis.2020.05.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
The electrolyte additives of potassium ferricyanide and potassium persulfate can ensure that CoO-supercapacitors achieve a fast charge/slow discharge and long cycling stability. The redox couple of Fe(CN)63-/Fe(CN)64- can induce S2O82- to produce the sulfate radical ( [Formula: see text] ). Strong oxidizing species, including S2O82-, Fe(CN)63- and [Formula: see text] , can accelerate oxidation of the CoO electrode surface from Co2+ to Co3+ in the charge process. The additives can achieve a good synergistic effect on accelerating CoO oxidation during the charge process. In a three-electrode cell, a CoO electrode with electrolyte additives achieves a fast-charge and slow-discharge time of 939 s and 1699 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 84.5% after 10,000 cycles at a current density of 5 A g-1. As a supercapacitor, the device can achieve a fast-charge and slow-discharge time of 156 s and 191 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 85.5% after 10,000 cycles at a current density of 5 A g-1.
Collapse
Affiliation(s)
- Xuanxuan Han
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Jiang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xing Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Demin Jiang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Kun Xie
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqiao Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
8
|
Binder-Free Nickel Oxide Lamellar Layer Anchored CoO x Nanoparticles on Nickel Foam for Supercapacitor Electrodes. NANOMATERIALS 2020; 10:nano10020194. [PMID: 31979002 PMCID: PMC7074865 DOI: 10.3390/nano10020194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
To enhance the connection of electroactive materials/current collector and accelerate the transport efficiency of the electrons, a binder-free electrode composed of nickel oxide anchored CoOx nanoparticles on modified commercial nickel foam (NF) was developed. The nickel oxide layer with lamellar structure which supplied skeleton to load CoOx electroactive materials directly grew on the NF surface, leading to a tight connection between the current collector and electroactive materials. The fabricated electrode exhibits a specific capacitance of 475 F/g at 1 mA/cm2. A high capacitance retention of 96% after 3000 cycles is achieved, attributed to the binding improvement at the current collector/electroactive materials interface. Moreover, an asymmetric supercapacitor with an operating voltage window of 1.4 V was assembled using oxidized NF anchored with cobalt oxide as the cathode and activated stainless steel wire mesh as the anode. The device achieves a maximum energy density of 2.43 Wh/kg and power density of 0.18 kW/kg, respectively. The modified NF substrate conducted by a facile and effective electrolysis process, which also could be applied to deposit other electroactive materials for the energy storage devices.
Collapse
|
9
|
Li S, Feng R, Li M, Zhao X, Zhang B, Liang Y, Ning H, Wang J, Wang C, Chu PK. Needle-like CoO nanowire composites with NiO nanosheets on carbon cloth for hybrid flexible supercapacitors and overall water splitting electrodes. RSC Adv 2020; 10:37489-37499. [PMID: 35521239 PMCID: PMC9057121 DOI: 10.1039/d0ra07307e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
A nanoscale core–shell NiO@CoO composite is prepared on flexible carbon cloth for electrodes in supercapacitors and overall water splitting. The needle-like CoO nanowires with NiO nanosheets as the active materials improve the elemental constituents as well as surface area. The NiO@CoO electrode boasts a capacity of 2.87 F cm−2 (1024.05 F g−1) at 1 A g−1 current density, and even at a large current density of 20 A g−1 the retention ratio is 80.9% after 5000 cycles. The excellent specific capacity with high rate capability can be ascribed to the unique structure which increases the area of the liquid–solid interface and facilitates electron and ion transport, improving the utilization efficiency of active materials. The asymmetric hybrid supercapacitor prepared with the core–shell electrode shows the energy output of 40.3 W h kg−1 at 750 W kg−1 with a better retention (71.7%) of specific capacitance after 15 000 cycles. In addition, linear sweep voltammetry is performed to assess the performance of the electrode in water splitting and the electrode shows excellent activity in the OER as manifested by a Tafel slope of 88.04 mV dec−1. Our results show that the bifunctional structure and design strategy have large potential in energy applications. A nanoscale core–shell NiO@CoO composite is prepared on flexible carbon cloth for electrodes in supercapacitors and overall water splitting.![]()
Collapse
Affiliation(s)
- Sa Li
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
- Department of Materials Processing and Control Engineering
| | - Ruichao Feng
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
- College of Mathematics and Physics
| | - Mai Li
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Xuan Zhao
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Beihe Zhang
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Yuan Liang
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Huanpo Ning
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Jiale Wang
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Chunrui Wang
- College of Science
- Donghua University
- Shanghai
- People's Republic of China
| | - Paul K. Chu
- Department of Physics
- Department of Materials Science and Engineering
- Department of Biomedical Engineering
- City University of Hong Kong
- Kowloon
| |
Collapse
|
10
|
Li X, Li X, Dong Y, Wang L, Jin C, Zhou N, Chen M, Dong Y, Xie Z, Zhang C. Porous cobalt oxides/carbon foam hybrid materials for high supercapacitive performance. J Colloid Interface Sci 2019; 542:102-111. [DOI: 10.1016/j.jcis.2019.01.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 11/30/2022]
|
11
|
Zeng L, Luo F, Xia X, Yang MQ, Xu L, Wang J, Feng X, Qian Q, Wei M, Chen Q. An Sn doped 1T–2H MoS2 few-layer structure embedded in N/P co-doped bio-carbon for high performance sodium-ion batteries. Chem Commun (Camb) 2019; 55:3614-3617. [DOI: 10.1039/c9cc01018a] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile route for fabrication of an Sn doped 1T–2H MoS2 few-layer structure embedded in N/P co-doped bio-carbon is initially developed using natural chlorella as an adsorbent and a nanoreactor.
Collapse
|
12
|
Kumar YA, Reddy AE, Bak JS, Cho IH, Kim HJ. Facile synthesis of NF/ZnOx and NF/CoOx nanostructures for high performance supercapacitor electrode materials. RSC Adv 2019; 9:21225-21232. [PMID: 35521331 PMCID: PMC9066169 DOI: 10.1039/c9ra01809c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
NF/ZnOx nanocone and NF/CoOx nanoparticle electrode materials were fabricated on a nickel foam surface using a simple chemical bath deposition approach and assessed as an electrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| | | | - Jin-Soo Bak
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - In-Ho Cho
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - Hee-Je Kim
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| |
Collapse
|
13
|
Deng L, Liu J, Ma Z, Fan G, Liu ZH. Free-standing graphene/bismuth vanadate monolith composite as a binder-free electrode for symmetrical supercapacitors. RSC Adv 2018; 8:24796-24804. [PMID: 35542171 PMCID: PMC9082335 DOI: 10.1039/c8ra04200d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 11/21/2022] Open
Abstract
Preparation of new types of electrode material is of great importance to supercapacitors. Herein, a graphene/bismuth vanadate (GR/BiVO4) free-standing monolith composite has been prepared via a hydrothermal process. Flexible GR sheets act as a skeleton in the GR/BiVO4 monolith composites. When used as a binder-free electrode in a three-electrode system, the GR/BiVO4 composite electrode can provide an impressive specific capacitance of 479 F g−1 in a potential window of −1.1 to 0.7 V vs. SCE at a current density of 5 A g−1. A symmetrical supercapacitor cell which can be reversibly charged–discharged at a cell voltage of 1.6 V has been assembled based on this GR/BiVO4 monolith composite. The symmetrical capacitor can deliver an energy density of 45.69 W h kg−1 at a power density of 800 W kg−1. Moreover, it ensures rapid energy delivery of 10.75 W h kg−1 with a power density of 40 kW kg−1. A symmetrical supercapacitor with a high energy density has been assembled based on a free-standing GR/BiVO4 monolith composite.![]()
Collapse
Affiliation(s)
- Lingjuan Deng
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang
- P. R. China
| | - Jiahuan Liu
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang
- P. R. China
| | - Zhanying Ma
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang
- P. R. China
| | - Guang Fan
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang
- P. R. China
| | - Zong-huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Shaanxi Normal University
- Ministry of Education
- Xi’an 710062
- P. R. China
| |
Collapse
|
14
|
Zhang N, Yan X, Huang Y, Li J, Ma J, Ng DHL. Electrostatically Assembled Magnetite Nanoparticles/Graphene Foam as a Binder-Free Anode for Lithium Ion Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8899-8905. [PMID: 28768104 DOI: 10.1021/acs.langmuir.7b01519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lithium ion batteries (LIBs) are promising candidates for energy storage, with the development of novel anode materials. We report the fabrication of Fe3O4 nanoparticles/graphene foam via electrostatic assembly and directly utilize it as a binder-free anode for LIBs. Owing to the integrated effect of the well-dispersed Fe3O4 nanoparticles and the conductive graphene foam network, such composite exhibited remarkable electrochemical performances. It delivered a large reversible specific capacity reaching to ∼1198 mAh g-1 at a current density of 100 mA g-1, a good rate capacity, and an excellent cyclic stability over 400 cycles. This work demonstrated a facile methodology to design and construct high-performance anode materials for LIBs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Physics, The Chinese University of Hong Kong , Hong Kong, China
| | - Xiaohui Yan
- Department of Physics, The Chinese University of Hong Kong , Hong Kong, China
| | - Yuan Huang
- Department of Physics, The Chinese University of Hong Kong , Hong Kong, China
| | - Jia Li
- Department of Physics, The Chinese University of Hong Kong , Hong Kong, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University , Changsha, China
| | - Dickon H L Ng
- Department of Physics, The Chinese University of Hong Kong , Hong Kong, China
| |
Collapse
|