1
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
2
|
Santos MC, Antonin VS, Souza FM, Aveiro LR, Pinheiro VS, Gentil TC, Lima TS, Moura JPC, Silva CR, Lucchetti LEB, Codognoto L, Robles I, Lanza MRV. Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes - A review on the relevance of materials and methods. CHEMOSPHERE 2022; 307:135763. [PMID: 35952792 DOI: 10.1016/j.chemosphere.2022.135763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.
Collapse
Affiliation(s)
- Mauro C Santos
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil.
| | - Vanessa S Antonin
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Felipe M Souza
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil; Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia Goiano, BR-153, Km 633, Zona Rural, CEP: 75650-000, Morrinhos, GO, Brazil
| | - Luci R Aveiro
- São Paulo Federal Institute of Education, Science and Technology, Rua Pedro Vicente, 625, Canindé São Paulo, CEP: 01109-010, SP, Brazil
| | - Victor S Pinheiro
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Tuani C Gentil
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Thays S Lima
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - João P C Moura
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Carolina R Silva
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lucia Codognoto
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida Trabalhador São-carlense 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
3
|
Souza FM, Pinheiro VS, Gentil TC, Lucchetti LE, Silva J, L.M.G. Santos M, De Oliveira I, Dourado WM, Amaral-Labat G, Okamoto S, Santos MC. Alkaline direct liquid fuel cells: Advances, challenges and perspectives. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
5
|
Use of WO2.72 Nanoparticles/Vulcan® XC72 GDE Electrocatalyst Combined with the Photoelectro-Fenton Process for the Degradation of 17α-Ethinylestradiol (EE2). Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zhou Z, Kong Y, Tan H, Huang Q, Wang C, Pei Z, Wang H, Liu Y, Wang Y, Li S, Liao X, Yan W, Zhao S. Cation-Vacancy-Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106541. [PMID: 35191113 DOI: 10.1002/adma.202106541] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalytic hydrogen peroxide (H2 O2 ) synthesis via the two-electron oxygen reduction reaction (2e ORR) pathway is becoming increasingly important due to the green production process. Here, cationic vacancies on nickel phosphide, as a proof-of-concept to regulate the catalyst's physicochemical properties, are introduced for efficient H2 O2 electrosynthesis. The as-fabricated Ni cationic vacancies (VNi )-enriched Ni2- x P-VNi electrocatalyst exhibits remarkable 2e ORR performance with H2 O2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials. Impressively, the as-created VNi possesses superb long-term durability for over 50 h, suppassing all the recently reported catalysts for H2 O2 electrosynthesis. Operando X-ray absorption near-edge spectroscopy (XANES) and synchrotron Fourier transform infrared (SR-FTIR) combining theoretical calculations reveal that the excellent catalytic performance originates from the VNi -induced geometric and electronic structural optimization, thus promoting oxygen adsorption to the 2e ORR favored "end-on" configuration. It is believed that the demonstrated cation vacancy engineering is an effective strategy toward creating active heterogeneous catalysts with atomic precision.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Qianwei Huang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Cheng Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Haozhu Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Yangyang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Yihan Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
7
|
Cornejo OM, Sirés I, Nava JL. Cathodic generation of hydrogen peroxide sustained by electrolytic O2 in a rotating cylinder electrode (RCE) reactor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Enhanced electrochemical advanced oxidation on boride activated carbon: The influences of boron groups. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Liu C, Li H, Chen J, Yu Z, Ru Q, Li S, Henkelman G, Wei L, Chen Y. 3d Transition-Metal-Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007249. [PMID: 33690976 DOI: 10.1002/smll.202007249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Decentralized electrosynthesis of hydrogen peroxide (H2 O2 ) via oxygen reduction reaction (ORR) can enable applications in disinfection control, pulping and textile bleaching, wastewater treatment, and renewable energy storage. Transition metal oxides are usually not efficient catalysts because they are more selective to produce H2 O. Here, it is shown that divalent 3d transition metal cations (Mn, Fe, Co, Ni, and Cu) can control the catalytic activity and selectivity of columbite nanoparticles. They are synthesized using polyoxoniobate (K7 HNb6 O19 ·13H2 O) and divalent metal cations by a hydrothermal method. The optimal NiNb2 O6 holds an H2 O2 selectivity of 96% with the corresponding H2 O2 Faradaic efficiency of 92% in a wide potential window from 0.2 to 0.6 V in alkaline electrolyte, superior to other transition metal oxide catalysts. Ex situ X-ray photoelectron and operando Fourier-transformed infrared spectroscopic studies, together with density functional theory calculations, reveal that 3d transition metals shift the d-band center of catalytically active surface Nb atoms and change their interactions with ORR intermediates. In an application demonstration, NiNb2 O6 delivers H2 O2 productivity up to 1 molH2O2 gcat -1 h-1 in an H-shaped electrolyzer and can yield catholytes containing 300 × 10-3 m H2 O2 to efficiently decomposing several organic dyes. The low-cost 3d transition-metal-mediated columbite catalysts show excellent application potentials.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Hao Li
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Junsheng Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Qiang Ru
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
| |
Collapse
|
10
|
Ferrara M, Bevilacqua M, Melchionna M, Criado A, Crosera M, Tavagnacco C, Vizza F, Fornasiero P. Exploration of cobalt@N-doped carbon nanocomposites toward hydrogen peroxide (H2O2) electrosynthesis: A two level investigation through the RRDE analysis and a polymer-based electrolyzer implementation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Using black carbon modified with NbMo and NbPd oxide nanoparticles for the improvement of H2O2 electrosynthesis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Yang H, Zhu M, Guo X, Yan C, Lin S. Anchoring MnCo 2O 4 Nanorods from Bimetal-Organic Framework on rGO for High-Performance Oxygen Evolution and Reduction Reaction. ACS OMEGA 2019; 4:22325-22331. [PMID: 31909315 PMCID: PMC6941181 DOI: 10.1021/acsomega.9b02362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
Oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are important reactions of energy storage and conversion devices. Therefore, it is highly desirable to design efficient and dual electrocatalysts for replacing the traditional noble-metal-based catalysts. Herein, we have developed a high-efficiency and low-cost MnCo2O4-rGO nanocomposite derived from bimetal-organic frameworks. For OER, MnCo2O4-rGO showed an onset potential of 1.56 V (vs reversible hydrogen electrode (RHE)) and a current density of 14.16 mA/cm2 at 1.83 V, being better than both pure MnCo2O4 and Pt/C. For ORR, MnCo2O4-rGO exhibited a half-wave potential (E 1/2) of 0.77 V (vs RHE), a current density of 3.33 mA/cm2 at 0.36 V, a high electron transfer number n (3.80), and long-term stability, being close to the performance of Pt/C. The high activity of MnCo2O4-rGO was attributed to the synergistic effect among rGO, manganese, and cobalt oxide. As a result, the resultant MnCo2O4-rGO has a great potential to be applied as a high-efficiency ORR and OER electrocatalyst.
Collapse
Affiliation(s)
- Hongxun Yang
- School
of Environmental & Chemical Engineering, Marine Equipment and Technology
Institute, and School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
- Zhenjiang
Borun New Materials, Co. Ltd., Zhenjiang 212050, Jiangsu, China
| | - Miaomiao Zhu
- School
of Environmental & Chemical Engineering, Marine Equipment and Technology
Institute, and School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Xingmei Guo
- School
of Environmental & Chemical Engineering, Marine Equipment and Technology
Institute, and School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Chao Yan
- School
of Environmental & Chemical Engineering, Marine Equipment and Technology
Institute, and School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Shengling Lin
- School
of Environmental & Chemical Engineering, Marine Equipment and Technology
Institute, and School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| |
Collapse
|
13
|
Pinheiro VS, Souza FM, Gentil TC, Böhnstedt P, Paz EC, Parreira LS, Hammer P, Batista BL, Santos MC. Insights in the Study of the Oxygen Reduction Reaction in Direct Ethanol Fuel Cells using Hybrid Platinum‐Ceria Nanorods Electrocatalysts. ChemElectroChem 2019. [DOI: 10.1002/celc.201901253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Victor S. Pinheiro
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Felipe M. Souza
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Tuani C. Gentil
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Paula Böhnstedt
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Edson C. Paz
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
- Instituto Federal de EducaçãoCiência e Tecnologia do Maranhão (IFMA), Campus Açailândia, CEP 65.930-000, R. Projetada, s/n Açailândia, MA Brazil
| | - Luanna S. Parreira
- Instituto de Química (IQ)Universidade de São Paulo (USP), CEP 05.508-000 Av. Prof. Lineu Prestes, 748 São Paulo, SP Brazil
| | - Peter Hammer
- Instituto de Química, UNESPUniversidade Estadual Paulista, CEP 14800-060 Araraquara, SP Brazil
| | - Bruno L. Batista
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Mauro C. Santos
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| |
Collapse
|
14
|
|
15
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Mineralization of paracetamol using a gas diffusion electrode modified with ceria high aspect ratio nanostructures. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Aveiro LR, da Silva AG, Antonin VS, Candido EG, Parreira LS, Geonmonond RS, de Freitas IC, Lanza MR, Camargo PH, Santos MC. Carbon-supported MnO2 nanoflowers: Introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Pinheiro VS, Paz EC, Aveiro LR, Parreira LS, Souza FM, Camargo PH, Santos MC. Ceria high aspect ratio nanostructures supported on carbon for hydrogen peroxide electrogeneration. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Meng Z, Li J, Huo F, Huang Y, Xiang Z. Fungi residue derived carbon as highly efficient hydrogen peroxide electrocatalyst. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|