1
|
Ji K, Xia S, Sang X, Zeid AM, Hussain A, Li J, Xu G. Enhanced Luminol Chemiluminescence with Oxidase-like Properties of FeOOH Nanorods for the Sensitive Detection of Uric Acid. Anal Chem 2023; 95:3267-3273. [PMID: 36722089 DOI: 10.1021/acs.analchem.2c04247] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
FeOOH nanorods, as one-dimensional nanomaterials, have been widely used in many fields due to their stable properties, low cost, and easy synthesis, but their application in the field of chemiluminescence (CL) is rarely reported. In this work, FeOOH nanorods were synthesized by a simple and environmentally friendly one-pot hydrothermal method and used for the first time as a catalyst for generating strong CL with luminol without additional oxidant. Remarkably, luminol-FeOOH exhibits about 250 times stronger CL than the luminol-H2O2 system. Its CL intensity was significantly quenched by uric acid. We established a simple, rapid, sensitive, and selective CL method for the detection of uric acid with a linear range of 20-1000 nM and a detection limit of 6.3 nM (S/N = 3). In addition, we successfully applied this method to the detection of uric acid in human serum, and the standard recoveries were 95.6-106.4%.
Collapse
Affiliation(s)
- Kaixiang Ji
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Xueqing Sang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Guobao Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Song J, Meng Z, Wang X, Zhang G, Bi C, Hou J. One-step microwave method synthesis of Fe3O4 nanoribbon@ carbon composite for Cr (Ⅵ) removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Chen C, Long J, Shen K, Liu X, Zhang W. Monodispersed Eu 2O 3-Modified Fe 3O 4@NCG Composites as Highly Efficient and Ultra-stable Catalysts for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38677-38688. [PMID: 35977406 DOI: 10.1021/acsami.2c07373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing highly efficient cathode catalysts for Zn-air batteries (ZABs) is an attractive research topic in sustainable energy storage area. Herein, the rare-earth metal oxide modification strategy has been proposed to construct the highly efficient and ultra-stable catalysts for ZABs. Accordingly, a graphene oxide-doped carbon-supported Eu2O3-modified Fe3O4 (Fe3O4/Eu2O3@NCG) catalyst is developed with layered Fe-Eu-MOF/GO as a precursor. Detailed characterization reveals that Fe3O4/Eu2O3@NCG possesses unique structural properties, including carbon-metal-carbon configuration, plentiful oxygen vacancies, and variable metal-active sites, which endows the catalyst with strong conductivity, high activity, and ultra-long stability. The optimal Fe3O4/Eu2O3@NCG catalyst exhibits an outstanding electrochemical performance, and the potential difference (Egap) between oxygen reduction reaction and oxygen evolution reaction is merely 0.68 V at 0.1 M KOH condition. Moreover, density functional theory calculations are employed to investigate the reaction mechanism and the synergetic effect between Fe and Eu atoms. Most importantly, the Fe3O4/Eu2O3@NCG-based aqueous ZAB delivers a high power density (218 mW/cm2), specific capacity (854 mA h/g@5 mA/cm2), and an impressive ultra-long cycle property with more than 1000 h (>6000 cycles) charge-discharge cycle life. In addition, the Fe3O4/Eu2O3@NCG-based all-solid-state ZAB also exhibits an outstanding performance, achieving >460 h cycle life (>2760 cycles) and strong practical application capability.
Collapse
Affiliation(s)
- Cheng Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China
| | - Jilan Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| |
Collapse
|
4
|
Li X, Zhang W, Liu Z, Wang S, Zhang X, Xu B, Yu P, Xu Y, Sun Y. Effective removal of tetracycline from water by catalytic peroxymonosulfate oxidation over Co@MoS2: Catalytic performance and degradation mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Li X, Zhang X, Wang S, Yu P, Xu Y, Sun Y. Highly enhanced heterogeneous photo-Fenton process for tetracycline degradation by Fe/SCN Fenton-like catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114856. [PMID: 35325739 DOI: 10.1016/j.jenvman.2022.114856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
To suppress the electron-hole recombination and enhance the electron transfer on carbon nitride, an Fe-doped porous carbon nitride catalyst (Fe/SCN) was synthesized via supramolecular self-assembly method and applied in heterogeneous Fenton activation for efficient tetracycline (TC) degradation. Various characterizations revealed that the catalyst exhibited excellent visible light capture performance and electron transfer capacity. The highest degradation efficiency and mineralization rate of TC (10 mg L-1) were achieved under neutral condition (90.3% and 61.2%, respectively) with the leaching of Fe less than 14 μg L-1. Free radical quenching experiments and spin-resonance spectroscopy characterizations revealed the dominating role of OH in TC degradation, and density functional theory calculation confirmed the formation of Fe-NX and revealed the interaction between Fe sites and H2O2. Three possible pathways of TC degradation were proposed, and the biological inhibition test revealed the potential of Fe/SCN/H2O2 system to reduce environmental risks caused by TC. This work provides a new insight into the design of metal-doped heterogeneous Fenton catalyst for the efficient degradation of antibiotic contaminants in water.
Collapse
Affiliation(s)
- Xi Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shiwen Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem Toxicol 2022; 161:112830. [PMID: 35077828 DOI: 10.1016/j.fct.2022.112830] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Ponceau dyes are one of the food coloring materials that are added to various pharmaceutical, health and food products and give them an appearance. These dyes contain contaminants such as Benzidine, 4-Aminobiphenyl, and 4-Aminoazobenzene that are safe in small amounts, but they are not approved by the US Food and Drug Administration (US-FDA) for human consumption. This study comprehensively was reviewed the properties, applications, chemistry, and toxicity of Ponceau dyes as food colorant substances. Electroanalysis of Ponceau dyes was discussed in detail, and the various electrochemical sensors used to detect and monitor these dyes as food colorant were examined. The applied methods of removing and degradation of these dyes in municipal and industrial wastes were also discussed. Conclusions and future perspectives to motivate future research were also explored.
Collapse
|
7
|
Guo S, Liu M, You L, Cheng G, Li J, Zhou K. Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe 2O 3 composites for advanced oxidation of organic pollutants. CHEMOSPHERE 2021; 279:130482. [PMID: 33865164 DOI: 10.1016/j.chemosphere.2021.130482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/27/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Oxygen vacancy engineering has emerged as an effective approach to improve the performance of catalysts for peroxymonosulfate (PMS) activation. Herein, we report a facile precipitation method followed by calcination to synthesize cost-effective and environmentally friendly magnesium-doped hematite (Mg/Fe2O3) composites. Multiple characterization results reveal that the incorporation of Mg can significantly increase the oxygen vacancies and specific surface area of 5%Mg/Fe2O3, leading to a significantly enhanced performance in degrading Rhodamine B (RhB) through PMS activation. In a typical reaction, almost complete RhB (10 mg/L) removal can be achieved by the activation of PMS (0.2 g/L) using 5%Mg/Fe2O3 (0.5 g/L). Moreover, the as-synthesized catalyst exhibits a broad pH working range (3.96-10.69), high stability, and recyclability. The effects of several parameters (e.g., catalyst amount, PMS dosage, solution pH and temperature, and coexisting inorganic anions) on the removal of RhB in the 5%Mg/Fe2O3/PMS system are investigated. A plausible PMS activation mechanism is proposed, and 1O2 and O2- are identified as the predominant reactive species in RhB degradation instead of SO4- and OH. This study provides new insights into the development of highly efficient iron-based catalysts and highlights their potential applications in environmental purification.
Collapse
Affiliation(s)
- Sheng Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, 637141, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Mengdie Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Liming You
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, 637141, Singapore
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Kun Zhou
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, 637141, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
8
|
Morphology-controlled electrochemical sensing of environmental Cd2+ and Pb2+ ions on expanded graphite supported CeO2 nanomaterials. Anal Chim Acta 2020; 1126:63-71. [DOI: 10.1016/j.aca.2020.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
|
9
|
Chen X, Zhang Y, Li C, Li C, Zeng T, Wan Q, Li Y, Ke Q, Yang N. Nanointerfaces of expanded graphite and Fe2O3 nanomaterials for electrochemical monitoring of multiple organic pollutants. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Zhang Y, Wan Q, Yang N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903780. [PMID: 31663294 DOI: 10.1002/smll.201903780] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|