1
|
Xiong Q, Xiong C, Zhou Q, Shen M, Song J, Zhao M, Zhang Y, An M, Ni Y. A Dual Effect Additive Modified Electrolyte Strategy to Improve the Electrochemical Performance of Zinc-Based Prussian Blue Analogs Energy Storage Device. SMALL METHODS 2024:e2401254. [PMID: 39487630 DOI: 10.1002/smtd.202401254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Prussian blue analogs (PBA) exhibit excellent potential for energy storage due to their unique three-dimensional open framework and abundant redox active sites. However, the dissolution of transition metal ions in water can compromise the structural integrity of PBAs, leading to significant issues such as low cycle life and capacity decay. To address these challenges, we proposed a dual-effect additive-modified electrolyte method to alleviate such issues, introducing sodium ferrocyanide (Na4Fe(CN)6) into aqueous alkaline electrolytes. It could not only capture Zn2+ dissolved on the surface of Na1.86Zn1.46[Fe(CN)6]0.87 (ZnHCF) electrode material during the cycling process but also conduct redox reactions on the electrode surface to provide additional capacitance. Through experiments and molecular simulation calculations, it showed that Na4Fe(CN)6 can restrict the movement of Zn dissolution into the electrolyte on the electrode surface. Based on this, an asymmetric supercapacitor based on ZnHCF//activated carbon was assembled with a modified electrolyte. The assembled supercapacitor displayed a specific capacitance of 1,329.65 mF cm-2, a power density of 2,900 mW cm-2, and an energy density of 388.28 mW h cm-2. This study provides a new idea for the design and construction of stable and efficient PBA energy storage materials by inhibiting the leaching of transition metals in PBA.
Collapse
Affiliation(s)
- Qing Xiong
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chuanyin Xiong
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qiusheng Zhou
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiangnan Song
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengjie Zhao
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongkang Zhang
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Meng An
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yonghao Ni
- Department of Chemical and biomedical Engineering, The University of Maine, Orono, Maine, 04469, USA
- University of New Brunswick, Limerick Pulp & Paper Ctr, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
2
|
Thuy VV, Hieu NS, Thu TV. Novel mixed nickel/cobalt hexacyanoferrate microcubes with synergistic effects for aqueous hybrid supercapacitors. Dalton Trans 2024; 53:17333-17342. [PMID: 39385678 DOI: 10.1039/d4dt02124j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Combining different metals in coordination compounds is an efficient strategy to improve their various properties. Herein, mixed nickel-cobalt hexacyanoferrate (NixCoyHCF) microcubes of varying x : y molar ratios are synthesized via a co-precipitation route and comprehensively characterized to study their material and electrochemical properties. NixCoyHCF microcubes display the battery-type electrochemical energy storage mechanism in aqueous electrolytes. Among the samples, Ni1Co2HCF microcubes deliver the highest specific capacity of 134 mA h g-1 (1068 F g-1) at a specific current of 1 A g-1. This significant enhancement in the capacity indicates the synergistic and cooperative effects between Ni and Co sites in Ni1Co2HCF microcubes. The asymmetric supercapacitor device assembled with Ni1Co2HCF microcubes delivers an excellent energy density of 74.4 μW h cm-2 at a power density of 750 μW cm-2 and retains 87.7% of its initial capacity after 2000 cycles at a current density of 5 mA cm-2, indicating its robust structural integrity and electrochemical durability. This study highlights the promising potential of mixed-metal hexacyanoferrates as high-performance electrodes for aqueous supercapacitors.
Collapse
Affiliation(s)
- Vu Van Thuy
- Department of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Si Hieu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Tran Viet Thu
- Department of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 100000, Vietnam.
| |
Collapse
|
3
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Miao T, Zhang J, Wang Y, Fang K, Wang Z, Zhan K, Zhao B. Composite cathode with low-defect NiFe Prussian blue analogue on reduced graphene oxide for aqueous sodium-ion hybrid supercapacitors. J Colloid Interface Sci 2023; 648:768-777. [PMID: 37321096 DOI: 10.1016/j.jcis.2023.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Although sodium-ion hybrid supercapacitor (Na-ion HSC) has attracted great interest, exploitation of suitable cathode materials for reversible Na+ insertion reaction remains a challenge. Herein, a novel binder-free composite cathode with highly crystallized NiFe Prussian blue analogue (NiFePBA) nanocubes in-situ grown on reduced graphene oxide (rGO) was fabricated via sodium pyrophosphate (Na4P2O7)-assisted co-precipitation and the subsequent ultrasonic spraying and chemical reduction. Profiting from the low-defect PBA framework and close interface contact of PBA and conductive rGO, the NiFePBA/rGO/carbon cloth composite electrode exhibits a high specific capacitance of 451F g-1, remarkable rate performance and satisfactory cycling stability in aqueous Na2SO4 electrolyte. Impressively, the aqueous Na-ion HSC assembled with the composite cathode and activated carbon (AC) anode manifests a high energy density of 51.11 Wh kg-1, superb power density of 10 kW kg-1 and the intriguing cycling stability. This work may open a door for scalable fabrication of binder-free PBA cathode material for aqueous Na-ion storage.
Collapse
Affiliation(s)
- Tianyu Miao
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingyuan Zhang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Wang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kun Fang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuo Wang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Zhan
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Zhao
- School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Li Y, Hua X, Wang J, Jin B. cMWCNT/CoHCF/AuNPs nanocomposites aptasensor for electrochemical detection of interleukin-6. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
6
|
Liu F, Wu C, Dong Y, Zhu C, Chen C. Poly(azure C)-coated CoFe Prussian blue analogue nanocubes for high-energy asymmetric supercapacitors. J Colloid Interface Sci 2022; 628:682-690. [PMID: 36027778 DOI: 10.1016/j.jcis.2022.08.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Prussian blue analogues are considered as promising supercapacitor electrode materials due to their high theoretical capacitance and low cost. Yet, they suffer from poor electronic conductivity and cycling life. Here, a redox dye polymer, poly(azure C) (PAC), is in-situ grown uniformly on CoFe Prussian blue analogue (CoFePBA). As a polymer mediator, the PAC coating on each PBA not only enhances the electronic conductivity and surface area, but also improves the structural stability and specific capacitance of PBA. As a result, the optimized CoFePBA@PAC possesses ultrahigh specific capacitance (968.67 F g-1 at 1 A g-1), superior rate performance (665.78 F g-1 at 10 A g-1), and excellent long-cycling stability (92.45% capacity retention after 2000 cycles). As an application, a fabricated CoFePBA@PAC//AC asymmetric supercapacitor (AC = activated carbon) maintains 84.7% capacitance retention in 2000 cycles at 1 A g-1 and displays a superior specific energy of 29.16 W h kg-1 at the power density of 799.78 W kg-1. These results demonstrate that redox dye polymer-coated PBAs with outstanding performance have a promising prospect in the field of energy storage.
Collapse
Affiliation(s)
- Fei Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chenghan Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Ying Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China.
| |
Collapse
|
7
|
Bratosin IN, Romanitan C, Craciun G, Djourelov N, Kusko M, Stoian MC, Radoi A. Graphitized porous silicon decorated with cobalt hexacyanoferrate nanocubes as hybrid electrode for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Xie B, Sun B, Gao T, Ma Y, Yin G, Zuo P. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Guo Z, Song R, Zhang L, Li Z, Yao H, Liu Q, Wang J, Li Z. Three-dimensional carbon dots/Prussian blue analogues nanocubes /nickel foams as self-standing electrodes for high-performance hybrid electrochemical capacitors. J Colloid Interface Sci 2022; 613:796-805. [DOI: 10.1016/j.jcis.2022.01.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
10
|
Zhang W, Wei X, Zhang X, Huo S, Gong A, Mo X, Li K. Well-dispersed Prussian blue analogues connected with carbon nanotubes for efficient capacitive deionization process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Wu X, Ru Y, Bai Y, Zhang G, Shi Y, Pang H. PBA composites and their derivatives in energy and environmental applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214260] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Neiva EGC, Zarbin AJG. Nickel hexacyanoferrate/graphene thin film: a candidate for the cathode in aqueous metal-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj02166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reduced graphene oxide/nickel nanoparticles nanocomposite was used as precursor to synthesize a novel graphene/nickel hexacyanoferrate thin film through a heterogeneous electrochemical reaction with ferricyanide ions in solution.
Collapse
Affiliation(s)
- Eduardo G. C. Neiva
- Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil
| | - Aldo J. G. Zarbin
- Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Wu S, Feng Q, Zhou S, Zhao H, Xu X, Su Q, Wang Y, Sun Y, Yang Q. Core-shell shaped Ni 2CoHCF@PPy microspheres from prussian blue analogues for high performance asymmetric supercapacitors. NANOTECHNOLOGY 2021; 32:445402. [PMID: 34311450 DOI: 10.1088/1361-6528/ac17c2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Recently, prussian blue analogues (PBAs), as the most classical class of metal-organic frameworks, have been widely studied by scientists. Nevertheless, the inferior conductivity of PBAs restricts the application in supercapacitors. In this work, nickel cobalt hexacyanoferrate (Ni2CoHCF) had been produced via a simple co-precipitation approach and coated with polypyrrole on its surface. The conductivity of PBAs was improved by the polypyrrole coating. The Ni2CoHCF@PPy-400 microspheres were demonstrated to the outstanding specific capacity of 82 mAh g-1at 1 A g-1. After 3000 cycles, the Ni2CoHCF@PPy-400 microspheres had a long cycle life and 86% specific capacity retention rate at 5 A g-1. Additionally, it was coupled with activated carbon to build high performance asymmetric supercapacitor (Ni2CoHCF@PPy-400//AC), which displayed a high energy density of 21.7 Wh kg-1at the power density of 888 W kg-1and good cycle stability after 5000 cycles (a capacity retention rate of 85.2%). What is more, the results reveal that the Ni2CoHCF@PPy-400 microspheresare a prospective candidate for exceptional energy storage devices.
Collapse
Affiliation(s)
- Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Qiaoliang Feng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Sheng Zhou
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Huanlei Zhao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Xin Xu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Yuzhi Sun
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
14
|
Gu J, Cui K, Niu S, Ge Y, Liu Y, Ma Z, Wang C, Li X, Wang X. Smart configuration of cobalt hexacyanoferrate assembled on carbon fiber cloths for fast aqueous flexible sodium ion pseudocapacitor. J Colloid Interface Sci 2021; 594:522-530. [PMID: 33774408 DOI: 10.1016/j.jcis.2021.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
Aqueous rechargeable batteries (ARBs) have the advantages of low cost, high safety and sustainable environmental friendliness. However, the key challenge for ARBs is the narrow electrochemical stability window of the water, undoubtedly leading to the low output voltage, the underachieved capacity and a low energy density. Prussian blues and their analogues have attracted great research interest for energy storage due to the advantages of facile synthesis, versatile categories and tunable three dimensional frameworks. Herein a flexible integrated potassium cobalt hexacyano ferrates (Co-HCF) on carbon fiber clothes (CFCs) were designed through a feasible route combining the controllable electrochemical deposition and the efficient co-precipitation process. The Co-HCF@CFCs demonstrate an excellent sodium ion storage with a high reversible capacity of 91 mAh g-1 at 1 A g-1 and 55 mAh g-1 at 10 A g-1 in aqueous electrolytes. The long cycling stability at the high current demonstrate the excellent structure stability of the Co-HCF@CFCs. Analysis on the rate Cyclic voltammograms (CV) profiles reveal the fast electrochemical kinetics with the capacitive controlled process, while galvanostatic intermittent titration technique (GITT) tests fast diffusion coefficient related with the sodium ions intercalation/deintercalation in the Co-HCF@CFCs. In addition, the flexible Co-CHF@CFCs also demonstrate excellent performance for quasi-solid-state ARBs even at the high bending angles. The high quality Co-HCF@CFCs with advantage of high rate capability and excellent reversible capacity make them a promising candidate for high performance ARBs.
Collapse
Affiliation(s)
- Jie Gu
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China
| | - Kui Cui
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China
| | - Shu Niu
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China
| | - Yu Ge
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China
| | - Yinhua Liu
- Institute of Future, School of Automation, Qingdao University, China
| | - Zhiyuan Ma
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Chao Wang
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China
| | - Xingyun Li
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China
| | - Xianfen Wang
- Institute of Materials for Energy and Environment, and College of Materials Science and Engineering, Qingdao University, China.
| |
Collapse
|
15
|
Song Z, Liu W, Wei X, Zhou Q, Liu H, Zhang Z, Liu G, Zhao Z. Charge storage mechanism of copper hexacyanoferrate nanocubes for supercapacitors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Song F, Huo D, Hu J, Huang H, Yuan J, Shen J, Wang AJ. Cationic supercapacitance of carbon nanotubes covered with copper hexacyanoferrate. NANOTECHNOLOGY 2019; 30:505401. [PMID: 31469111 DOI: 10.1088/1361-6528/ab3ef2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Carbon nanotubes (CNT) are uniformly covered with copper hexacyanoferrate (CuHCF) via coprecipitation to form a core shell structure. The CuHCF thickness can be tuned from 10 nm to 30 nm by changing the CuHCF loading in the hybrids from 25% to 58%. The capacitive behavior is affected by the hydrated cation radius. In 1 mol l-1 KCl solution, CuHCF/CNT hybrids (46% CuHCF loading) show the largest specific capacitance of up to 989 F g-1 at a discharge density of 1 A g-1. The hybrids also possess superior rate capability with only 8.2% capacitance loss when increasing the discharge current from 1 to 20 A g-1. The superior capacitive performance of the hybrids in the K+-ion solution can be attributed to the smaller hydrated radius of the K+ ion, which will favor the diffusion of the cation within the CuHCF lattice, leading to a larger faradic current. Besides, the cyclic stability of the hybrids is surprising, with 89.7% capacitance retention after 10000 discharge/charge cycles. The CuHCF/CNT hybrids are combined with the reduced graphene oxides (RGOs) to construct an asymmetrical supercapacitor, and its potential window can reach up to 2.0 V. More importantly, this supercapacitor exhibits a high energy density of 60.4 Wh kg-1 at the power density of 0.5 kW kg-1.
Collapse
Affiliation(s)
- Fangfang Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Zhang X, Chen Y, Zhang W, Yang D. Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2019; 558:190-199. [PMID: 31590047 DOI: 10.1016/j.jcis.2019.09.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
It is challenging to develop novel oxygen evolution reaction (OER) electrocatalysts with high performance and low cost to replace the noble metal-based catalysts for large-scale electrochemical water splitting. To settle such issue, herein, self-assembled porous coral-like architecture constructed by cobalt hexacyanoferrate (CoHCF) nanocrystals and nitrogen-doped carbon (NC) nanoplatelets network is fabricated for the first time by a facile electroless deposition approach. The porous coral-like CoHCF/NC hybrid exhibits an excellent OER electrocatalytic activity in alkaline medium with an ultra-low onset overpotential of 165 mV (vs. RHE) and a small Tafel slope of 73.97 mV dec-1, which are much lower than that of bare CoHCF (onset overpotential of 296 mV and Tafel slope of 113.25 mV dec-1); it also exhibits a lower overpotential of 357 mV (vs. RHE) at current density of 10 mA cm-1 and superior durability even after 16 h. The excellent electrocatalytic performance of CoHCF/NC hybrid can be assigned to its unique coral-like architecture self-assembled by CoHCF nanocrystals and NC nanoplatelets network, which significantly increases the electrochemical active surface area and remarkably facilitates the electron and ion transfer. This work offers rational design and facile synthesis strategy for transition metal hexacyanoferrate-based nonprecious electrocatalysts with unique nano-architecture and excellent electrocatalytic efficiency towards OER.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Department of Physics, School of Science, Tibet University, Lhasa, 850000, PR China.
| | - Wanli Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Dongxu Yang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
19
|
Alipour S, Mousavi-Khoshdel SM. Investigation of the electrochemical behavior of functionalized graphene by nitrophenyl groups as a potential electrode for supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Operando XAFS and XRD Study of a Prussian Blue Analogue Cathode Material: Iron Hexacyanocobaltate. CONDENSED MATTER 2018. [DOI: 10.3390/condmat3040036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reversible electrochemical lithiation of potassium iron hexacyanocobaltate (FeCo) was studied by operando X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) assisted by chemometric techniques. In this way, it was possible to follow the system dynamics and retrieve structural and electronic transformations along cycling at both Fe and Co sites. These analyses confirmed that FeCo features iron as the main electroactive site. Even though the release of potassium ions causes a local disorder around the iron site, the material exhibits an excellent structural stability during the alkali ion deinsertion/insertion processes. An independent but interrelated analysis approach offers a good strategy for data treatment and provides a time-resolved picture of the studied system.
Collapse
|
21
|
Targholi E, Rahmanifar MS, Mousavi-Khoshdel SM. Facile synthesis of copper hexacyanoferrate/graphene nanocomposite for electrochemical energy storage. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ehsan Targholi
- Department of Chemistry; Iran University of Science and Technology; Tehran Iran
| | | | | |
Collapse
|
22
|
Yin X, Li H, Wang H, Zhang Z, Yuan R, Lu J, Song Q, Wang JG, Zhang L, Fu Q. Self-Templating Synthesis of Cobalt Hexacyanoferrate Hollow Structures with Superior Performance for Na-Ion Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29496-29504. [PMID: 30070465 DOI: 10.1021/acsami.8b08455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prussian blue (PB) and its analogues (PBA), especially with hollow structures, have attracted growing attention from the researchers of energy storage field. Herein, we have developed a facile self-templating method to synthesize hollow-structured cobalt hexacyanoferrate (CoHCF) with controllable morphologies by using water-soluble precursors as templates. The method is versatile and can be extended to synthesize various PB/PBA hollow structures with tunable composition and morphology. Profiting from the unique hollow structure, the CoHCF hollow prisms manifest exceptional electrochemical performance in the Na2SO4 aqueous electrolyte, including a high specific capacitance (284 F g-1 at 1 A g-1), a high rate capability, and an excellent cycling stability (92% retention after 5000 cycles). A hybrid supercapacitor device assembled with the CoHCF hollow prisms and activated carbon shows a high specific density of 47 W h kg-1 at a specific power of 1000 W kg-1 and stable cycling performance.
Collapse
Affiliation(s)
- Xuemin Yin
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Haiqi Wang
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Zhiyong Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU) , Xi'an 710072 , China
| | - Ruimei Yuan
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Qiang Song
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU) , Xi'an 710072 , China
| | - Jian-Gan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU) , Xi'an 710072 , China
| | - Leilei Zhang
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Qiangang Fu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center , Northwestern Polytechnical University , Xi'an 710072 , China
| |
Collapse
|
23
|
High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets. J Colloid Interface Sci 2018; 531:369-381. [PMID: 30041114 DOI: 10.1016/j.jcis.2018.07.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
Activated carbon (AC), as a material for asymmetric supercapacitor (ASC), is the most widely used as negative electrode. However, AC has some electrode kinetic problems which are corresponded to inner-pore ion transport that restrict the maximum specific energy and power that can be attained in an energy storage system. Therefore, it is an important topic for researchers to extend the carbonaceous material with qualified structure for negative electrode supercapacitor. In this work, novel promoted ASC have been fabricated using nanoarrays of polyaniline grown on graphene oxide sheets (PANI-GO) as positive electrode and also, carbonized nitrogen-doped carbon nanoarrays grown on the surface of graphene (CPANI-G) as negative electrode. The porous structure of the as-synthesized CPANI-G can enlarge the specific surface area and progress ion transport into the interior of the electrode materials. From the other point of view, nitrogen doping can impressively improve the wettability of the carbon surface in the electrolyte and upgrade the specific capacitance by a pseudocapacitive effect. Because of the high specific capacitance and distinguished rate performance of PANI-GO and CPANI-G and moreover, the synergistic effects of the two electrodes with the optimum potential window, the ASC display excellent electrochemical performances. In comparison with the symmetric cell based on PANI-GO (40 Wh kg-1), the fabricated PANI-GO//CPANI-G ASC exhibits a remarkably enhanced maximum energy density of 52 Wh kg-1. Furthermore, ASC electrode exhibits excellent cycling durability, with 90.3% specific capacitance preserving even after 5000 cycles. These admirable results show great possibilities in developing energy storage devices with high energy and power densities for practical applications.
Collapse
|
24
|
Zhang X, He P, Zhang X, Li C, Liu H, Wang S, Dong F. Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Facile synthesis, characterization and application to high performance supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Rawool CR, Punde NS, Rajpurohit AS, Karna SP, Srivastava AK. High energy density supercapacitive material based on a ternary hybrid nanocomposite of cobalt hexacyanoferrate/carbon nanofibers/polypyrrole. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Naidek N, Zarbin AJG, Orth ES. Covalently linked nanocomposites of polypyrrole with graphene: Strategic design toward optimized properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Naiane Naidek
- Department of Chemistry; Universidade Federal do Parana (UFPR), CP 19081, CEP 81531-980; Curitiba PR Brazil
| | - Aldo J. G. Zarbin
- Department of Chemistry; Universidade Federal do Parana (UFPR), CP 19081, CEP 81531-980; Curitiba PR Brazil
| | - Elisa S. Orth
- Department of Chemistry; Universidade Federal do Parana (UFPR), CP 19081, CEP 81531-980; Curitiba PR Brazil
| |
Collapse
|
27
|
Zhang X, Tao L, He P, Zhang X, He M, Dong F, He S, Li C, Liu H, Wang S, Zhang Y. A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Shang Y, Xie T, Gai Y, Su L, Gong L, Lv H, Dong F. Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Facile synthesis of Mesoporouscobalt Hexacyanoferrate Nanocubes for High-Performance Supercapacitors. NANOMATERIALS 2017; 7:nano7080228. [PMID: 28825671 PMCID: PMC5575710 DOI: 10.3390/nano7080228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022]
Abstract
Mesoporous cobalt hexacyanoferrate nanocubes (meso–CoHCF) were prepared for the first time through a facile sacrificial template method. The CoHCF mesostructures possess a high specific surface area of 548.5 m2·g−1 and a large amount of mesopores, which enable fast mass transport of electrolyte and abundant energy storage sites. When evaluated as supercapacitor materials, the meso–CoHCF materials exhibit a high specific capacitance of 285 F·g−1, good rate capability and long cycle life with capacitance retention of 92.9% after 3000 cycles in Na2SO4 aqueous electrolyte. The excellent electrochemical properties demonstrate the rational preparation of mesoporous prussian blue and its analogues for energy storage applications.
Collapse
|