1
|
Chinnappa Chinnabathini V, Ag KR, Nguyen THT, Zarkua Z, Abbas I, Hoang TH, Lievens P, Grandjean D, Verbruggen SW, Janssens E. AuCu bimetallic nanocluster-modified titania nanotubes for photoelectrochemical water splitting: composition-dependent atomic arrangement and activity. NANOSCALE 2025; 17:833-845. [PMID: 39588610 DOI: 10.1039/d4nr03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The photoelectrochemical (PEC) water splitting reaction of bimetallic AuxCu1-x (x = 1, 0.75, 0.5, 0.25 and 0) nanocluster-decorated TiO2 nanotube (TNT) photoanodes was investigated using a solar simulator. A strong enhancement in the anodic photocurrent relative to pristine TNTs was found with clear composition-dependent PEC activity, increasing with the Cu content and peaking at Au0.25Cu0.75. Electron microscopy and X-ray absorption fine structure spectra recorded at both Au and Cu edges identified a clear composition-dependent atomic arrangement of the spherical nanoclusters on anatase TNTs, resulting mostly from a time-dependent restructuring of the original metallic nanoalloys in the ambient environment. With time, Cu segregates from the alloy to form a surface oxide layer surrounding a pure gold metallic core in the gold-rich nanoclusters (x = 0.75 and 0.50) or a face centered tetragonal (fct)-intermetallic Au0.5Cu0.5 nanoalloy in copper-rich (x = 0.25) particles. In pure Cu nanoclusters, a metallic Cu core is stabilized by surrounding Cu2O and CuO. The enhanced PEC activity is attributed to a synergy between Au and Cu that upon segregation produces bifunctional catalytic sites consisting of a metallic Au/AuCu alloy and copper oxide at the surface of the nanoclusters. The photoactivity under solar light illumination is boosted by the plasmonic response of the metal. The ordered structure of the fct-AuCu alloy present in the most active Au0.25Cu0.75 may explain its higher stability and photocatalytic performance. Hence, this work provides insight into the relationship between the atomic-level structure of AuxCu1-x nanoalloys on TNTs and their PEC activity.
Collapse
Affiliation(s)
- Vana Chinnappa Chinnabathini
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium.
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium.
| | - Thi Hong Trang Nguyen
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Zviadi Zarkua
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Imran Abbas
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Thi Hang Hoang
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium.
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| |
Collapse
|
2
|
Sadiq MU, Shah A, Nisar J, Shah I. Photoelectrocatalytic Detection and Degradation Studies of a Hazardous Textile Dye Safranin T. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2218. [PMID: 37570536 PMCID: PMC10420668 DOI: 10.3390/nano13152218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Herein, we report an electrochemical scaffold consisting of functionalized multiwalled carbon nanotubes (COOH-fMWCNTs) and iron-doped zinc oxide nanoparticles (Fe-ZnO) for the detection of a hazardous textile dye safranin T (ST) and monitoring of its photocatalytic degradation. Prior to the detection and degradation analysis, Fe-ZnO NPs were synthesized by the sol-gel method and characterized by a number of structural and morphological techniques. The carboxyl moiety of COOH-fMWCNTs possessing a strong affinity for the amino functionality of ST led to significant enhancement of the current response at the designed electrochemical platform, whereas the electrocatalytic role, surface area enhancement, and the provision of binding sites of Fe-ZnO led to a further increase in the peak current intensity of ST. Electrochemical impedance spectroscopy showed that the sensing scaffold made of the glassy carbon electrode modified with COOH-fMWCNTs and Fe-ZnO efficiently transfers charge between the transducer and the redox probe. Under optimized conditions, the developed sensor showed a 2.3 nM limit of detection for ST. Moreover, recovery experiments and anti-interference tests qualified the sensing platform for practical applications. The dye was photocatalytically degraded using Fe-ZnO NPs up to 99% in 60 min with a rate constant of 0.068 min-1. The designed sensor was used to probe the degradation kinetics of the target dye, and the results were found consistent with the findings obtained from electronic absorption method. To the best of our knowledge, the present work is the first approach for the efficient detection and almost absolute degradation of ST.
Collapse
Affiliation(s)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Jan Nisar
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan;
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
An efficient electrochemical sensor based on multi-walled carbon nanotubes functionalized with polyethylenimine for simultaneous determination of o-nitrophenol and p-nitrophenol. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Detection and Degradation Studies of Nile Blue Sulphate Using Electrochemical and UV-Vis Spectroscopic Techniques. Catalysts 2023. [DOI: 10.3390/catal13010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An efficient and reliable electrochemical sensing platform based on COOH-fMWCNTs modified GCE (COOH-fMWCNTs/GCE) was designed for the detection of nanomolar concentration of Nile Blue Sulphate (NBS). In comparison to the bare GCE, the electrochemical sensing scaffold considerably enhanced the peak current response of NBS dye as confirmed from the results of voltammetric investigations. The electrochemical approach of detecting NBS in the droplet of its solution dried over the surface of modified electrode validated, the role of modifier in enhancing the sensing response. Under optimized conditions, the designed electrochemical platform demonstrated a wide linearity range (0.03–10 μM) for NBS, with LOD of 1.21 nM. Moreover, COOH-fMWCNTs/GCE was found reproducible and stable as confirmed by repeatability and inter-day durability tests. The selectivity of the designed sensing matrix was ensured by anti-interference tests. The photocatalytic degradation of NBS dye was carried out by using TiO2 nanoparticles as photocatalyst in the presence of H2O2. UV-visible spectroscopic studies revealed 95% photocatalytic degradation of NBS following a pseudo-first-order kinetics with a rate constant of 0.028 min−1. These findings were supported electrochemically by monitoring the photocatalytically degraded dye at the designed sensing platform. The color variation and final decolorization of the selected dye in water served as a visual indicator of the degradation process. To conclude, the designed sensing platform immobilized with COOH-fMWCNTs imparted improved selectivity and sensitivity to detect and to, monitor the photocatalytic degradation of NBS.
Collapse
|
5
|
Localized Formation of Highly Surface-Active Gold Nanoparticle on Intrinsic Nickel Containing Carbon Black and Its Scanning Electrochemical Microscopy Interrogation and Electrocatalytic Oxidation of Hydrazine. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Sangamithirai D, Ramanathan S. Electrochemical sensing platform for the detection of nitroaromatics using g-C3N4/V2O5 nanocomposites modified glassy carbon electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Thakur A, Kumar A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155219. [PMID: 35421493 DOI: 10.1016/j.scitotenv.2022.155219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Environmental safety has become a significant issue for the safety of living species, humans, and the ecosystem as a consequence of the harmful and detrimental consequences of various pollutants such as pesticides, heavy metals, dyes, etc., emitted into the surroundings. To resolve this issue, various efforts, legal acts, scientific and technological perspectives have been embraced, but still remain a global concern. Furthermore, due to non-portability, complex detection, and inappropriate on-site recognition of sophisticated laboratory tools, the real-time analysis of these environmental contaminants has been limited. As a result of innovative nano bioconjugation and nanofabrication techniques, nanotechnology enables enhanced nanomaterials (NMs) based (bio)sensors demonstrating ultra-sensitivity and a short detection time in real-time analysis, as well as superior sensitivity, reliability, and selectivity have been developed. Several researchers have demonstrated the potent detection of pollutants such as Hg2+ ion by the usage of AgNP-MD in electronic and optoelectronic methods with a detection limit of 5-45 μM which is quite significant. Taking into consideration of such tremendous research, herein, the authors have highlighted 21st-century strategies towards NMs based biosensor technology for pollutants detection, including nano biosensors, enzyme-based biosensors, electrochemical-based biosensors, carbon-based biosensors and optical biosensors for on-site identification and detection of target analytes. This article will provide a brief overview of the significance of utilizing NMs-based biosensors for the detection of a diverse array of hazardous pollutants, and a thorough understanding of the detection processes of NMs-based biosensors, as well as the limit of quantification (LOQ) and limit of detection (LOD) values, rendering researchers to focus on the world's need for a sustainable earth.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
8
|
|
9
|
Saeed A, Akhtar M, Zulfiqar S, Hanif F, Alsafari IA, Agboola PO, Haider S, Warsi MF, Shakir I. Thiamine-functionalized silver–copper bimetallic nanoparticles-based electrochemical sensor for sensitive detection of anti-inflammatory drug 4-aminoantipyrine. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Li Z, Shen T, Gu J, Chattha SA. PVP–gold–copper nanocluster based NIR fluorescence probe for sensitive detection of malachite green. NEW J CHEM 2022. [DOI: 10.1039/d1nj04943g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel NIR fluorescent probe based on PVP–Au/CuNCs has been developed, exhibiting good selectivity and stability for detecting malachite green (MG).
Collapse
Affiliation(s)
- Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Tian Shen
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Sadaqat Ali Chattha
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Department of Leather & Fibre Technology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Lungulescu EM, Setnescu R, Pătroi EA, Lungu MV, Pătroi D, Ion I, Fierăscu RC, Șomoghi R, Stan M, Nicula NO. High-Efficiency Biocidal Solution Based on Radiochemically Synthesized Cu-Au Alloy Nanoparticles. NANOMATERIALS 2021; 11:nano11123388. [PMID: 34947739 PMCID: PMC8705577 DOI: 10.3390/nano11123388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023]
Abstract
The use of nanotechnologies in the applied biomedical sciences can offer a new way to treat infections and disinfect surfaces, materials, and products contaminated with various types of viruses, bacteria, and fungi. The Cu-Au nanoparticles (NPs) were obtained by an eco-friendly method that allowed the obtaining in a one-step process of size controlled, well dispersed, fully reduced, highly stable NPs at very mild conditions, using high energy ionizing radiations. The gamma irradiation was performed in an aqueous system of Cu2+/Au3+/Sodium Dodecyl Sulfate (SDS)/Ethylene Glycol. After irradiation, the change of color to ruby-red was the first indicator for the formation of NPs. Moreover, the UV-Vis spectra showed a maximum absorption peak between 524 and 540 nm, depending on the copper amount. The Cu-Au NPs presented nearly spherical shapes, sizes between 20 and 90 nm, and a zeta potential of about −44 mV indicating a good electrostatic stability. The biocidal properties performed according to various standards applied in the medical area, in dirty conditions, showed a 5 lg reduction for Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae, a 5 lg reduction for both enveloped and non-enveloped viruses such as Adenovirus type 5, Murine Norovirus, and human Coronavirus 229E, and a 4 lg reduction for Candida albicans, respectively. Thus, the radiochemically synthesized Cu-Au alloy NPs proved to have high biocide efficiency against the tested bacteria, fungi, and viruses (both encapsulated and non-encapsulated). Therefore, these nanoparticle solutions are suitable to be used as disinfectants in the decontamination of hospital surfaces or public areas characterized by high levels of microbiological contamination.
Collapse
Affiliation(s)
- Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
- Correspondence:
| | - Radu Setnescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
- Department of Advanced Technologies, Faculty of Sciences and Arts, Valahia University of Târgoviște, 13 Aleea Sinaia, 130004 Targoviste, Romania
| | - Eros A. Pătroi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Magdalena V. Lungu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Delia Pătroi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Ioana Ion
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Radu-Claudiu Fierăscu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.-C.F.); (R.Ș.)
| | - Raluca Șomoghi
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.-C.F.); (R.Ș.)
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Nicoleta-Oana Nicula
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| |
Collapse
|
12
|
Baye AF, Han DH, Kassahun SK, Appiah-Ntiamoah R, Kim H. Improving the reduction and sensing capability of Fe3O4 towards 4-nitrophenol by coupling with ZnO/Fe0/Fe3C/graphitic carbon using ZnFe-LDH@carbon as a template. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Electrocatalytic oxidation and flow injection analysis of formaldehyde at binary metal oxides (Co3O4–NiO and CuO–Co3O4) modified pencil graphite electrodes. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02861-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Naik SS, Lee SJ, Theerthagiri J, Yu Y, Choi MY. Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126269. [PMID: 34116276 DOI: 10.1016/j.jhazmat.2021.126269] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 05/20/2023]
Abstract
Novel ZnS/Au/f-multi-walled carbon nanotube (MWCNT) nanostructures were produced via a pulsed laser-assisted technique followed by a wet chemical process. ZnS nanospheres were synthesized via pulsed laser ablation of a Zn target in DMSO, which was used as a solvent and sulfur source. Notably, no additional sulfur sources, surfactants, or reducing agents were used during the synthesis. The structure and morphology of the prepared materials were characterized by X-ray diffraction, micro-Raman spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The fabricated electrochemical sensor based on ZnS/Au/f-MWCNT nanocomposites exhibited rapid and highly selective detection of a toxic pollutant, namely 4-nitrophenol (4-NP). Linear sweep voltammetry analysis revealed that the optimized ZnS/Au10/f-MWCNT3 nanocomposite displayed a wide linear dynamic response (10-150 μM) with high sensitivity (0.8084μAμM-1cm-2) and low limit of detection (30 nM). The excellent 4-NP sensing performance of the modified electrode was attributed to the availability of numerous active sites (electrochemical surface area=0.00369μFcm-2) and an enhanced electron transfer rate. Interference and stability studies were also conducted. A 100-fold excess of competing ions (Na+, K+, Mg2+, Cl-, NO3-, 4-AP, AA, and 2-NP) did not interfere with the selective detection of 4-NP. The newly fabricated ZnS/Au10/f-MWCNT3 nanocomposite could be an effective sensor for the selective and sensitive detection of toxic organic nitro compounds.
Collapse
Affiliation(s)
- Shreyanka Shankar Naik
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
15
|
Yang Y, Zhao Y, You T, Liu Q, Gao Y, Chen H, Yin P. A highly sensitive acetylcholinesterase electrochemical biosensor based on Au-Tb alloy nanospheres for determining organophosphate pesticides. NANOTECHNOLOGY 2021; 32:425501. [PMID: 34256363 DOI: 10.1088/1361-6528/ac13e8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Accurately detect the residues of organophosphate pesticides (OPs) in food and environment is critical to our daily lives. In this study, we developed a novel acetylcholinesterase (AChE) biosensor based on Au-Tb alloy nanospheres (NSs) for rapid and sensitive detection of OPs for the first time. Au-Tb alloy NSs that with good conductivity and biocompatibility were produced with a mild hydrothermal. Under optimal conditions, the AChE biosensor was obtained by a simple assembly process, with a big linear range (10-13-10-7M) and the limit of detection was 2.51 × 10-14M for the determination of methyl parathion. Moreover, the determination of methyl parathion with the prepared biosensor presented a high sensitivity, outstanding repeatability and superior stability compared with other reported biosensors. Through the determination of tap water and Yanming lake samples, it was proved that the modified biosensor with satisfactory recoveries (96.76%-108.6%), and are realizable in the determination of OPs in real samples.
Collapse
Affiliation(s)
- Yunxia Yang
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yisong Zhao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Qian Liu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yukun Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Huaxiang Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Su Y, Zheng X, Cheng H, Rao M, Chen K, Xia J, Lin L, Zhu H. Mn-Fe 3O 4 nanoparticles anchored on the urushiol functionalized 3D-graphene for the electrochemical detection of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124926. [PMID: 33461095 DOI: 10.1016/j.jhazmat.2020.124926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Preparation of highly active and cost-effective electrode materials is of great interest in electrochemical detection. In this study, a simple urushiol-templated solvothermal method combined with calcination was proposed to fabricate N-doped three-dimensional graphene (3D-G) with Mn-doped Fe3O4 nanoparticles loaded on the surface (Mn-Fe3O4/3D-G). Because of the large active surface area, porous channel and high loading ratio of Mn-Fe3O4 nanoparticles, as-prepared Mn-Fe3O4/3D-G sensor showed high activity on the determination of 4-nitrophenol (4-NP), which are much improved from the control un-modified samples. The wide linear concentration range (5-100 μM), low detection limit (19 nM) and satisfactory recovery of 4-NP in various water samples (98.38-100.41%) indicated that the Mn-Fe3O4/3D-G electrode can be potentially used for real-world applications. This study gives a simple but meaningful strategy for constructing transition metal oxide/graphene composite materials with high electrocatalytic activity.
Collapse
Affiliation(s)
- Yanning Su
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xuelin Zheng
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Hongyang Cheng
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Minhui Rao
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Kaidong Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jianrong Xia
- Fujian Engineering and Research Center of New Chinese lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Liangxu Lin
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australia Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong 2519, Australia; Institute of Advanced Materials and Nanotechnology, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Hu Zhu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
17
|
Jain V, Khusnud A, Tiwari J, Mishra M, Mishra PK. Biogenic proceedings and characterization of copper-gold nanoalloy: Evaluation of their innate antimicrobial and catalytic activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1783313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vijaylakshmi Jain
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - Azima Khusnud
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - Jaya Tiwari
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - Meenakshi Mishra
- School of Life and Allied Sciences, ITM University Atal Nagar, Raipur, India
| | - Pankaj Kishor Mishra
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| |
Collapse
|
18
|
Recent progress on electrochemical sensing strategies as comprehensive point-care method. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Electrochemically synthesized superhydrophilic 3D tree-like Ag microstructure for ultrasensitive detection of omethoate. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Wang J, Liu D, Liu Y, Wang F, Huang S, Luo X, Liu D, Chen D, Wei J, Ning J. Highly Hydrophilic Polymer Composite Modified Electrode for Trace Copper Detection Based on Synergetic Electrostatic Attractions and Chelating Interactions. ELECTROANAL 2020. [DOI: 10.1002/elan.202000025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jianhui Wang
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Donglin Liu
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Yongle Liu
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Faxiang Wang
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Shouen Huang
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Xin Luo
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Dongmin Liu
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Donger Chen
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Jiaqian Wei
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| | - Jingheng Ning
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha 410110 China
| |
Collapse
|
21
|
Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S. Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Nehru R, Gopi PK, Chen SM. Enhanced sensing of hazardous 4-nitrophenol by a graphene oxide–TiO2 composite: environmental pollutant monitoring applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj06176b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accurate detection of hazardous 4-nitrophenol (4-NP) is deemed essential for the environment and human health.
Collapse
Affiliation(s)
- Raja Nehru
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Praveen Kumar Gopi
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| |
Collapse
|
23
|
Balram D, Lian KY, Sebastian N. Ultrasound-assisted synthesis of 3D flower-like zinc oxide decorated fMWCNTs for sensitive detection of toxic environmental pollutant 4-nitrophenol. ULTRASONICS SONOCHEMISTRY 2020; 60:104798. [PMID: 31546087 DOI: 10.1016/j.ultsonch.2019.104798] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Sonochemical synthesis of functionalized multi-walled carbon nanotubes (fMWCNTs) embellished 3D flower-like zinc oxide (ZnO) nanocomposite based novel electrochemical sensor for the detection of toxic environmental pollutant 4-nitrophenol (4-NP) is detailed in this paper. We have used laser-assisted synthesis technique in the development of 3D flower-like ZnO nanoparticles (NPs) and ultrasonication method was employed in preparation of ZnO NPs@fMWCNTs nanocomposite using a high-intensity ultrasonic bath DC200H with power of 200 W/cm2 and 40 KHz frequency. The nanocomposite was meticulously fabricated on screen printed carbon electrode (SPCE) to carry out various electrochemical analysis. Different characterizations such as Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, UV visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) of the materials used in this work were taken. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques are used in electrochemical investigations. We have observed well-defined oxidation and reduction peak currents representing electrochemical mechanism of 4-NP at very low potentials for ZnO NPs@fMWCNTs/SPCE. Furthermore, we were able to achieve efficient electrochemical determination of 4-NP using the developed sensor with a high sensitivity of 11.44 μA μM-1 cm-2 and very low detection limit (LOD) of 0.013 μM in a broad linear range of 0.06-100 μM. All the significant features of a good sensor including anti-interference, good stability, excellent repeatability, and reproducibility were exhibited by the sensor. Moreover, we have tested practical feasibility of sensor by carrying out real sample analysis on different water samples.
Collapse
Affiliation(s)
- Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan.
| | - Neethu Sebastian
- Department of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| |
Collapse
|
24
|
Afzali M, Mostafavi A, Nekooie R, Jahromi Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Balasubramanian P, Balamurugan TST, Chen SM, Chen TW. Simplistic synthesis of ultrafine CoMnO 3 nanosheets: An excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:123-133. [PMID: 30176410 DOI: 10.1016/j.jhazmat.2018.08.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Design and fabrication of cost effective analytical tools to monitor toxic organic emissions in eco system is of a great necessity. Nitrophenols are a class of widespread toxic organic pollutant lead to serious adverse effects in biosphere on its consumption. This article reports a high sensitive, cost effective, robust electrochemical sensor for 4-nitrophenol (4-NP) in environmental water samples. A novel sheet like CoMnO3 (CMO Ns) nanocatalyst was synthesized via oxalic acid assisted co-precipitation technique and employed as electrocatalyst for the high sensitive detection of 4-NP. The physiochemical properties of CMO Ns are studied in detail via XRD, FTIR, TEM, TGA, and XPS. TEM results reviled the protocol is an excellent way for synthesis of a uniformly distributed CMO Ns with lathery surface. Evident to the surface and other physiochemical studies the CMO Ns based sensor holds superior electrocatalytic activity towards 4-NP detection with excellent sensitivity (2.458 μA μM-1 cm-2) coupled with nanomolar detection (10 nm) limits. Moreover, the constructed sensor holds reliable long-term durability, good reproducibility, and excellent working stability. The practical applicability of the developed sensor was evaluated by determination of 4-NP in samples acquired from water resources with RSD ± 3.3%.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - T S T Balamurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC; Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| |
Collapse
|
26
|
Amiripour F, Azizi SN, Ghasemi S. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Biosens Bioelectron 2018; 107:111-117. [DOI: 10.1016/j.bios.2018.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 11/25/2022]
|
27
|
Electrochemical fabrication of dendritic silver–copper bimetallic nanomaterials in protic ionic liquid for electrocarboxylation. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Wang Y, Ma J, Ye X, Wong W, Li C, Wu K. Enhanced effects of ionic liquid and gold nanoballs on the photoelectrochemical sensing performance of WS2 nanosheets towards 2,4,6-tribromophenol. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Chemical Sensing Applications of ZnO Nanomaterials. MATERIALS 2018; 11:ma11020287. [PMID: 29439528 PMCID: PMC5848984 DOI: 10.3390/ma11020287] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/20/2023]
Abstract
Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article.
Collapse
|
30
|
Zhang YQ, Blatov VA, Zheng TR, Yang CH, Qian LL, Li K, Li BL, Wu B. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor. Dalton Trans 2018; 47:6189-6198. [DOI: 10.1039/c7dt04682k] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A zinc coordination polymer is a sensor for detection of TNP, Fe3+, Cr2O72− and CrO42−.
Collapse
Affiliation(s)
- Ya-Qian Zhang
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Vladislav A. Blatov
- Samara Center for Theoretical Materials Science (SCTMS)
- Samara University
- Samara 443011
- Russia
- School of Materials Science and Engineering
| | - Tian-Rui Zheng
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Chang-Hao Yang
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- Xi'an
- PR China
| | - Lin-Lu Qian
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Ke Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Bao-Long Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Bing Wu
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
31
|
Idris AO, Mabuba N, Arotiba OA. Towards cancer diagnostics – an α-feto protein electrochemical immunosensor on a manganese(iv) oxide/gold nanocomposite immobilisation layer. RSC Adv 2018; 8:30683-30691. [PMID: 35548739 PMCID: PMC9085503 DOI: 10.1039/c8ra06135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 11/25/2022] Open
Abstract
A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented. The MnO2NRs was synthesised using a hydrothermal method and AuNPs were electrodeposited on a glassy carbon electrode surface. The MnO2NRs were characterised with scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterise the immunosensor at each stage of the biosensor preparation. The MnO2 nanorods and AuNPs were applied as the immobilisation layer to efficiently capture the antibodies and amplify the electrochemical signal. Under optimised conditions, the fabricated immunosensor was utilised for the quantification of AFP with a wide dynamic range of 0.005 to 500 ng mL−1 and detection limits of 0.00276 ng mL−1 and 0.00172 ng mL−1 (S/N = 3) were obtained from square wave anodic stripping voltammetry and EIS respectively. The nanocomposite modifier enhanced the immunosensor performance. More so, this label-free immunosensor possesses good stability over a period of two weeks when stored at 4 °C and was selective in the presence of some interfering species. A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented.![]()
Collapse
Affiliation(s)
- Azeez O. Idris
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
| | - Nonhlangabezo Mabuba
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
- Centre for Nanomaterials Science Research
- University of Johannesburg
| | - Omotayo A. Arotiba
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
- Centre for Nanomaterials Science Research
- University of Johannesburg
| |
Collapse
|
32
|
Simple synthesis of core-shell structure of Co–Co3O4 @ carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.184] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|