1
|
Mulder JT, Monchen JOV, Vogel YB, Lin CT, Drago F, Caselli VM, Saikumar N, Savenije TJ, Houtepen AJ. Orthogonal Electrochemical Stability of Bulk and Surface in Lead Halide Perovskite Thin Films and Nanocrystals. J Am Chem Soc 2024; 146:24415-24425. [PMID: 39177513 PMCID: PMC11378294 DOI: 10.1021/jacs.4c06340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Lead halide perovskites have attracted significant attention for their wide-ranging applications in optoelectronic devices. A ubiquitous element in these applications is that charging of the perovskite is involved, which can trigger electrochemical degradation reactions. Understanding the underlying factors governing these degradation processes is crucial for improving the stability of perovskite-based devices. For bulk semiconductors, the electrochemical decomposition potentials depend on the stabilization of atoms in the lattice-a parameter linked to the material's solubility. For perovskite nanocrystals (NCs), electrochemical surface reactions are strongly influenced by the binding equilibrium of passivating ligands. Here, we report a spectro-electrochemical study on CsPbBr3 NCs and bulk thin films in contact with various electrolytes, aimed at understanding the factors that control cathodic degradation. These measurements reveal that the cathodic decomposition of NCs is primarily determined by the solubility of surface ligands, with diminished cathodic degradation for NCs in high-polarity electrolyte solvents where ligand solubilities are lower. However, the solubility of the surface ligands and bulk lattice of NCs are orthogonal, such that no electrolyte could be identified where both the surface and bulk are stabilized against cathodic decomposition. This poses inherent challenges for electrochemical applications: (i) The electrochemical stability window of CsPbBr3 NCs is constrained by the reduction potential of dissolved Pb2+ complexes, and (ii) cathodic decomposition occurs well before the conduction band can be populated with electrons. Our findings provide insights to enhance the electrochemical stability of perovskite thin films and NCs, emphasizing the importance of a combined selection of surface passivation and electrolyte.
Collapse
Affiliation(s)
- Jence T Mulder
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Julius O V Monchen
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Yan B Vogel
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cheng Tai Lin
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Filippo Drago
- Chemistry Facility, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Valentina M Caselli
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Niranjan Saikumar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Tom J Savenije
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan J Houtepen
- Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Adiraju A, Munjal R, Viehweger C, Al-Hamry A, Brahem A, Hussain J, Kommisetty S, Jalasutram A, Tegenkamp C, Kanoun O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:2961. [PMID: 36991672 PMCID: PMC10054825 DOI: 10.3390/s23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The transition of electrochemical sensors from lab-based measurements to real-time analysis requires special attention to different aspects in addition to the classical development of new sensing materials. Several critical challenges need to be addressed including a reproducible fabrication procedure, stability, lifetime, and development of cost-effective sensor electronics. In this paper, we address these aspects exemplarily for a nitrite sensor. An electrochemical sensor has been developed using one-step electrodeposited (Ed) gold nanoparticles (EdAu) for the detection of nitrite in water, which shows a low limit of detection of 0.38 µM and excellent analytical capabilities in groundwater. Experimental investigations with 10 realized sensors show a very high reproducibility enabling mass production. A comprehensive investigation of the sensor drift by calendar and cyclic aging was carried out for 160 cycles to assess the stability of the electrodes. Electrochemical impedance spectroscopy (EIS) shows significant changes with increasing aging inferring the deterioration of the electrode surface. To enable on-site measurements outside the laboratory, a compact and cost-effective wireless potentiostat combining cyclic and square wave voltammetry, and EIS capabilities has been designed and validated. The implemented methodology in this study builds a basis for the development of further on-site distributed electrochemical sensor networks.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Rohan Munjal
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christian Viehweger
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Amina Brahem
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Jawaid Hussain
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Sanhith Kommisetty
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis of Solid Surfaces, Institute for Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
3
|
Grdeń M, Próchniak M. Electrode Surface Coverage with Deposit Generated Under Conditions of Electrochemical Nucleation and Growth. A Mathematical Analysis. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe theory of the diffusion limited electrochemical nucleation and growth of a deposit consisting of isolated 3D hemispherical nuclei has been re-analysed. The analysis focuses on a widely discussed model which assumes formation of “diffusion zones” around the growing nuclei. It has been proposed in the literature that the deposit-free fraction of the surface area of the substrate can be directly calculated from the substrate coverage with the “diffusion zones”. The aim of this work is to analyse whether such an approach can be applied for the growth of isolated 3D hemispherical nuclei. This is accomplished by evaluation of equations which describe nuclei radii at various stages of the deposition process. The formulae allow determining the substrate surface coverage with the growing deposit. This, in turn, allows simulating and analysing faradaic currents due to other than the electrodeposition reactions which take place at the deposit-free fraction of the substrate surface. Both instantaneous and progressive modes of the nucleation are discussed and the influence of the nucleation type on the faradaic currents is outlined. A comparison with other approaches reported in the literature indicates that the deposit-free fraction of the substrate surface may not always be determined by means of recalculation of the substrate coverage with the “diffusion zones”.
Graphical abstract
Collapse
|
4
|
Partanen K, Pei Y, Hillen P, Hassan M, McEleney K, Schatte G, Payne SJ, Oleschuk R, She Z. Investigating electrochemical deposition of gold on commercial off-the-shelf 3-D printing materials towards developing sensing applications †. RSC Adv 2022; 12:33440-33448. [PMID: 36425202 PMCID: PMC9679451 DOI: 10.1039/d2ra05455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic highlighted the inaccessibility of quick and affordable clinical diagnostics. This led to increased interest in creating low-cost portable electrochemical (EC) devices for environmental monitoring and clinical diagnostics. One important perspective is to develop new fabrication methods for functional and low-cost electrode chips. Techniques, such as electron beam and photolithography, allow precise and high-resolution electrode fabrication; however, they are costly and can be time-consuming. More recently, fused deposition modeling three-dimensional (3-D) printing is being used as an alternative fabrication technique due to the low-cost of the printer and rapid prototyping capability. In this study, we explore enhancing the conductivity of 3-D printed working electrodes with EC gold deposition. Two commercial conductive filament brands were used and investigated to fabricate electrode chips. Furthermore, strategies to apply epoxy glue and conductive silver paint were investigated to control the electrode surface area and ensure good electrical connection. This device enables detection at drinking water concentration thresholds. The practical application of the fabricated electrodes is demonstrated by detecting Cu2+ using anodic stripping voltammetry. Customized electrodes were made with 3-D printing and gold electrochemical reduction towards analytical applications.![]()
Collapse
Affiliation(s)
- Kristin Partanen
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| | - Yu Pei
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada,Department of Civil Engineering, Queen's UniversityEllis HallKingstonONK7L 3N6Canada
| | - Phillip Hillen
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| | - Malek Hassan
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| | - Kevin McEleney
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| | - Gabriele Schatte
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| | - Sarah Jane Payne
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada,Department of Civil Engineering, Queen's UniversityEllis HallKingstonONK7L 3N6Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| | - Zhe She
- Department of Chemistry, Queen's UniversityChernoff HallKingstonONK7L 3N6Canada
| |
Collapse
|
5
|
Zakaria ND, Omar MH, Ahmad Kamal NN, Abdul Razak K, Sönmez T, Balakrishnan V, Hamzah HH. Effect of Supporting Background Electrolytes on the Nanostructure Morphologies and Electrochemical Behaviors of Electrodeposited Gold Nanoparticles on Glassy Carbon Electrode Surfaces. ACS OMEGA 2021; 6:24419-24431. [PMID: 34604624 PMCID: PMC8482400 DOI: 10.1021/acsomega.1c02670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/10/2021] [Indexed: 05/25/2023]
Abstract
Electrodeposition is an electrochemical method employed to deposit stable and robust gold nanoparticles (AuNPs) on electrode surfaces for creating chemically modified electrodes (CMEs). The use of several electrodeposition techniques with different experimental parameters allow in obtaining various surface morphologies of AuNPs deposited on the electrode surface. By considering the electrodeposition of AuNPs in various background electrolytes could play an important strategy in finding the most suitable formation of the electrodeposited AuNP films on the electrode surface. This is because different electrode roughnesses can have different effects on the electrochemical activities of the modified electrodes. Thus, in this study, the electrodeposition of AuNPs onto the glassy carbon (GC) electrode surfaces in various aqueous neutral and acidic electrolytes was achieved by using the cyclic voltammetry (CV) technique with no adjustable CV parameters. Then, surface morphologies and electrochemical activities of the electrodeposited AuNPs were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), CV, and electrochemical impedance spectroscopy (EIS). The obtained SEM and 3D-AFM images show that AuNPs deposited at the GC electrode prepared in NaNO3 solution form a significantly better, uniform, and homogeneous electrodeposited AuNP film on the GC electrode surface with nanoparticle sizes ranging from ∼36 to 60 nm. Meanwhile, from the electrochemical performances of the AuNP-modified GC electrodes, characterized by using a mixture of ferricyanide and ferrocyanide ions [Fe(CN6)3-/4-], there is no significant difference observed in the case of charge-transfer resistances (R ct) and heterogeneous electron-transfer rate constants (k o), although there are differences in the surface morphologies of the electrodeposited AuNP films. Remarkably, the R ct values of the AuNP-modified GC electrodes are lower than those of the bare GC electrode by 18-fold, as the R ct values were found to be ∼6 Ω (p < 0.001, n = 3). This has resulted in obtaining k o values of AuNP-modified GC electrodes between the magnitude of 10-2 and 10-3 cm s-1, giving a faster electron-transfer rate than that of the bare GC electrode (10-4 cm s-1). This study confirms that using an appropriate supporting background electrolyte plays a critical role in preparing electrodeposited AuNP films. This approach could lead to nanostructures with a more densely, uniformly, and homogeneously electrodeposited AuNP film on the electrode surfaces, albeit utilizing an easy and simple preparation method.
Collapse
Affiliation(s)
- Nor Dyana Zakaria
- Institute
for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Penang, Malaysia
| | - Muhamad Huzaifah Omar
- School
of Chemical Sciences, Universiti Sains Malaysia
(USM), 11800 Gelugor, Penang, Malaysia
| | | | - Khairunisak Abdul Razak
- Institute
for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Penang, Malaysia
- School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang, Malaysia
| | - Turgut Sönmez
- Department
of Energy System Engineering, Technology Faculty, Karabük University, 78050 Karabük, Turkey
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Venugopal Balakrishnan
- Institute
for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Penang, Malaysia
| | - Hairul Hisham Hamzah
- School
of Chemical Sciences, Universiti Sains Malaysia
(USM), 11800 Gelugor, Penang, Malaysia
| |
Collapse
|
6
|
Vogel YB, Evans CW, Belotti M, Xu L, Russell IC, Yu LJ, Fung AKK, Hill NS, Darwish N, Gonçales VR, Coote ML, Swaminathan Iyer K, Ciampi S. The corona of a surface bubble promotes electrochemical reactions. Nat Commun 2020; 11:6323. [PMID: 33303749 PMCID: PMC7729901 DOI: 10.1038/s41467-020-20186-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
The evolution of gaseous products is a feature common to several electrochemical processes, often resulting in bubbles adhering to the electrode’s surface. Adherent bubbles reduce the electrode active area, and are therefore generally treated as electrochemically inert entities. Here, we show that this general assumption does not hold for gas bubbles masking anodes operating in water. By means of imaging electrochemiluminescent systems, and by studying the anisotropy of polymer growth around bubbles, we demonstrate that gas cavities adhering to an electrode surface initiate the oxidation of water-soluble species more effectively than electrode areas free of bubbles. The corona of a bubble accumulates hydroxide anions, unbalanced by cations, a phenomenon which causes the oxidation of hydroxide ions to hydroxyl radicals to occur at potentials at least 0.7 V below redox tabled values. The downhill shift of the hydroxide oxidation at the corona of the bubble is likely to be a general mechanism involved in the initiation of heterogeneous electrochemical reactions in water, and could be harnessed in chemical synthesis. Gas bubbles forming on the surface of an electrode, a phenomenon common to several industrial electrolytic processes, are usually perceived as inert, passivating entities. Here, the authors show that that this general assumption does not hold for gas bubbles masking anodes operating in water.
Collapse
Affiliation(s)
- Yan B Vogel
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, WA, 6102, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mattia Belotti
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, WA, 6102, Australia
| | - Longkun Xu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Isabella C Russell
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Li-Juan Yu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Alfred K K Fung
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nicholas S Hill
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, WA, 6102, Australia
| | - Vinicius R Gonçales
- School of Chemistry, Australian Centre for NanoMedicine and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
7
|
|
8
|
Abstract
The deposition of palladium nanoparticles (PdNPs) on the surface of n-Si (100) substrate by pulsed electrolysis in dimethyl sulfoxide (DMSO) solutions of Pd(NO3)2 was investigated. It has been shown that nonaqueous medium (DMSO) contributes the Pd (II) recovery at high cathode potential values avoiding side processes to occur. In combination with the pulse mode, this allows the deposition of spherical PdNPs with their uniform distribution on the silicon surface. We established that the main factors influencing the geometry of PdNPs are the value of the cathode potential, the concentration of palladium ions in solution, and the number of pulse-pause cycles. It is shown that with increasing Ecathode value there is a tendency to increase the density of silicon surface filling with nanoparticles. As the concentration of Pd(NO3)2 increases from 1 to 6 mM, the density of silicon surface filling with PdNPs and their average size also increase. We found that with increasing the number of pulse-pause cycles, there is a predominant growth of nanoparticles in diameter, which causes 2D filling of the substrate surface.
Collapse
|
9
|
Vogel YB, Gooding JJ, Ciampi S. Light-addressable electrochemistry at semiconductor electrodes: redox imaging, mask-free lithography and spatially resolved chemical and biological sensing. Chem Soc Rev 2019; 48:3723-3739. [PMID: 31143897 DOI: 10.1039/c8cs00762d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spatial confinement of electrochemical reactions at solid/liquid interfaces is a mature area of research, and a central theme from cell biology to analytical chemistry. Monitoring or manipulating the kinetics of a charge transfer reaction in 2D is generally achieved using scanning electrochemical microscopy or multielectrode arrays, techniques that rely on moving physical probes or on a network of electrical connections. This tutorial is introducing concepts and instruments to confine faradaic electrochemical reactions in 2D without resorting to the mechanical movement of a probe, and with the simple design of one semiconducting electrode, one electrical lead and a single-channel potentiostat. We provide a theoretical background of semiconductor electrochemistry, and describe the use of localised visible light stimuli on photoconductor/liquid and semiconductor/liquid interfaces to address electrical conductivity - hence chemical reactivity - only at one specific site defined by the experimentalist. This enables shifting of the tenet of one electrode/one wire towards one wire/many electrodes. We discuss the applications of this emerging platform in the context of surface chemistry patterning, redox imaging, chemical and biological sensing, generating chemical gradients, electrocatalysis, nanotechnology and cell biology.
Collapse
Affiliation(s)
- Yan B Vogel
- Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia.
| | - J Justin Gooding
- School of Chemistry, The Australian Centre for NanoMedicine and the Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Simone Ciampi
- Department of Chemistry, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
10
|
|