1
|
Sasi S, Chandran A, Sugunan SK, Krishna AC, Nair PR, Peter A, Shaji AN, Subramanian KRV, Pai N, Mathew S. Flexible Nano-TiO 2 Sheets Exhibiting Excellent Photocatalytic and Photovoltaic Properties by Controlled Silane Functionalization-Exploring the New Prospects of Wastewater Treatment and Flexible DSSCs. ACS OMEGA 2022; 7:25094-25109. [PMID: 35910153 PMCID: PMC9330195 DOI: 10.1021/acsomega.2c01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
TiO2 nanoparticles surface-modified with silane moieties, which can be directly coated on a flexible substrate without the requirement of any binder materials and postsintering processes, are synthesized and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, time-correlated single-photon counting, and transmission electron microscopy. The viability of the prepared surface-modified TiO2 (M-TiO2) sheets as a catalyst for the photo-induced degradation of a model dye, methylene blue, was checked using UV-visible absorption spectroscopy. The data suggest that, compared to unmodified TiO2, M-TiO2 sheets facilitate better dye-degradation, which leads to a remarkable photocatalytic activity that results in more than 95% degradation of the dye in the first 10 min and more than 99% of the degradation in the first 50 min of the photocatalytic experiments. We also demonstrate that M-TiO2 can be recycled with negligible reduction in photocatalytic activity. Further, the photovoltaic properties of the developed M-TiO2 sheets were assessed using UV-visible absorption spectroscopy, electrochemical impedance spectroscopy (EIS), and photochronoamperometry. Dye-sensitized solar cells (DSSC) fabricated using M-TiO2 as the photoanode exhibited a photoconversion efficiency of 4.1% under direct sunlight. These experiments suggested that M-TiO2 sheets show enhanced photovoltaic properties compared to unmodified TiO2 sheets, and that, when N-719 dye is incorporated, the dye-TiO2 interaction is more favorable for M-TiO2 than bare TiO2. The simple solution processing method demonstrated in this paper rendered a highly flexible photoanode made of M-TiO2 with superior charge-separation efficiency to an electrode made of bare TiO2. We propose that our findings on the photovoltaic properties of M-TiO2 open up arenas of further improvement and a wide scope for the large-scale production of flexible DSSCs on plastic substrates at room temperature in a cost-effective way.
Collapse
Affiliation(s)
- Soorya Sasi
- Advanced
Molecular Materials Research Centre, Mahatma
Gandhi University, Kottayam 686 560, Kerala, India
| | - Akash Chandran
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala, India
| | - Sunish K. Sugunan
- Department
of Chemistry, CMS College Kottayam (Autonomous)—affiliated
to Mahatma Gandhi University, Kottayam 686001, Kerala, India
| | - Ardra C Krishna
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala, India
| | | | - Aneena Peter
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala, India
| | - Arsha N. Shaji
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala, India
| | | | - Narendra Pai
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Suresh Mathew
- Advanced
Molecular Materials Research Centre, Mahatma
Gandhi University, Kottayam 686 560, Kerala, India
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala, India
| |
Collapse
|
3
|
Santos JS, Araújo PDS, Pissolitto YB, Lopes PP, Simon AP, Sikora MDS, Trivinho-Strixino F. The Use of Anodic Oxides in Practical and Sustainable Devices for Energy Conversion and Storage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E383. [PMID: 33466856 PMCID: PMC7830790 DOI: 10.3390/ma14020383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
This review addresses the main contributions of anodic oxide films synthesized and designed to overcome the current limitations of practical applications in energy conversion and storage devices. We present some strategies adopted to improve the efficiency, stability, and overall performance of these sustainable technologies operating via photo, photoelectrochemical, and electrochemical processes. The facile and scalable synthesis with strict control of the properties combined with the low-cost, high surface area, chemical stability, and unidirectional orientation of these nanostructures make the anodized oxides attractive for these applications. Assuming different functionalities, TiO2-NT is the widely explored anodic oxide in dye-sensitized solar cells, PEC water-splitting systems, fuel cells, supercapacitors, and batteries. However, other nanostructured anodic films based on WO3, CuxO, ZnO, NiO, SnO, Fe2O3, ZrO2, Nb2O5, and Ta2O5 are also explored and act as the respective active layers in several devices. The use of AAO as a structural material to guide the synthesis is also reported. Although in the development stage, the proof-of-concept of these devices demonstrates the feasibility of using the anodic oxide as a component and opens up new perspectives for the industrial and commercial utilization of these technologies.
Collapse
Affiliation(s)
- Janaina Soares Santos
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Patrícia dos Santos Araújo
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Yasmin Bastos Pissolitto
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Paula Prenholatto Lopes
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| | - Anna Paulla Simon
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento Km 1, Pato Branco 85503-390, Brazil; (A.P.S.); (M.d.S.S.)
- Chemistry Graduate Program, Campus CEDETEG, Midwestern Parana State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, Guarapuava 85040-167, Brazil
| | - Mariana de Souza Sikora
- Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Via do Conhecimento Km 1, Pato Branco 85503-390, Brazil; (A.P.S.); (M.d.S.S.)
- Chemistry Graduate Program, Campus CEDETEG, Midwestern Parana State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, Guarapuava 85040-167, Brazil
| | - Francisco Trivinho-Strixino
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Via João Leme dos Santos Km 110, Sorocaba 18052-780, Brazil; (J.S.S.); (P.d.S.A.); (Y.B.P.); (P.P.L.)
| |
Collapse
|
4
|
Khakpour Z, Tavassoli M, Moradlou O. Sol–gel approach for the growth of vertically aligned 3D-TiO2 nanorod arrays as an efficient photoanode for high-performance dye-sensitized solar cells. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01821-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Deng Y, Ma Z, Ren F, Wang G. Improved photoelectric performance of DSSCs based on TiO2 nanorod array/Ni-doped TiO2 compact layer composites film. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04399-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|