1
|
Wei Z, Elliott JD, Papaderakis AA, Dryfe RA, Carbone P. Relation between Double Layer Structure, Capacitance, and Surface Tension in Electrowetting of Graphene and Aqueous Electrolytes. J Am Chem Soc 2024; 146:760-772. [PMID: 38153698 PMCID: PMC10785801 DOI: 10.1021/jacs.3c10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Deciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li+) concentration on the interfacial tension (γSL) of the charged graphene/electrolyte interface. We demonstrate that the dependence of γSL on the applied surface charge exhibits an asymmetric behavior relative to the neutral surface. At the positively charged graphene sheet, the electrowetting response is amplified by electrolyte concentration, resulting in a strongly hydrophilic surface. On the contrary, at negative potential bias, γSL shows a weaker response to the charging of the electrode. Changes in γSL greatly affect the total areal capacitance predicted by the Young-Lippmann equation but have a negligible impact on the simulated total areal capacitance, indicating that the EDL structure is not directly correlated with the wettability of the surface and different interfacial mechanisms drive the two phenomena. The proposed model is validated experimentally by studying the electrowetting response of highly oriented pyrolytic graphite over a wide range of electrolyte concentrations. Our work presents the first combined theoretical and experimental study on electrowetting using carbon surfaces, introducing new conceptual routes for the investigation of wetting phenomena under potential bias.
Collapse
Affiliation(s)
- Zixuan Wei
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Joshua D. Elliott
- Diamond
Light Source, Diamond House, Harwell Science
and Innovation Park, Oxfordshire, Didcot OX11 ODE, United Kingdom
| | - Athanasios A. Papaderakis
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Robert A.W. Dryfe
- Department
of Chemistry and Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Paola Carbone
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Papaderakis AA, Roh JS, Polus K, Yang J, Bissett MA, Walton A, Juel A, Dryfe RAW. Dielectric-free electrowetting on graphene. Faraday Discuss 2023; 246:307-321. [PMID: 37409473 DOI: 10.1039/d3fd00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Electrowetting is a simple way to induce the spreading and retraction of electrolyte droplets. This method is widely used in "device" applications, where a dielectric layer is applied between the electrolyte and the conducting substrate. Recent work, including contributions from our own laboratory, have shown that reversible electrowetting can be achieved directly on conductors. We have shown that graphite surfaces, in particular when combined with highly concentrated electrolyte solutions, show a strong wetting effect. The process is driven by the interactions between the electrolyte ions and the surface, hence models of double-layer capacitance are able to explain changes in the equilibrium contact angles. Herein, we extend the approach to the investigation of electrowetting on graphene samples of varying thickness, prepared by chemical vapor deposition. We show that the use of highly concentrated aqueous electrolytes induces a clear yet subtle electrowetting response due to the adsorption of ions and the suppression of the negative effect introduced by the surface impurities accumulating during the transfer process. The latter have been previously reported to fully hinder electrowetting at lower electrolyte concentrations. An amplified wetting response is recorded in the presence of strongly adsorbed/intercalated anions in both aqueous and non-aqueous electrolytes. The phenomenon is interpreted based on the anion-graphene interactions and their influence on the energetics of the interface. By monitoring the dynamics of wetting, an irreversible behaviour is identified in all cases as a consequence of the irreversibility of anion adsorption and/or intercalation. Finally, the effect of the underlying reactions on the timescales of wetting is also examined.
Collapse
Affiliation(s)
- Athanasios A Papaderakis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ji Soo Roh
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Kacper Polus
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jing Yang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Mark A Bissett
- National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alex Walton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Anne Juel
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Papaderakis AA, Al Nasser HA, Chen JY, Juel A, Dryfe RA. Deciphering the mechanism of electrowetting on conductors with immiscible electrolytes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Peng Y, Li M, Jia X, Su J, Zhao X, Zhang S, Zhang H, Zhou X, Chen J, Huang Y, Wågberg T, Hu G. Cu Nanoparticle-Decorated Boron-Carbon-Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28956-28964. [PMID: 35704422 DOI: 10.1021/acsami.2c06729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, irregular Cu nanoparticle-decorated boron-carbon-nitrogen (Cu-BCN) nanosheets were successfully synthesized. A Cu-BCN dispersion was deposited on a bare glassy carbon electrode (GCE) to prepare an electrochemical sensor (Cu-BCN/GCE) for the detection of chloramphenicol (CAP) in the environment. Cu-BCN was characterized using high-resolution scanning transmission electron microscopy (HRSTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). The performance of the Cu-BCN/GCE was studied using electrochemical impedance spectroscopy (EIS), and its advantages were proven by electrode comparison. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions, including the amount of Cu-BCN deposited, enrichment potential, deposition time, and pH of the electrolyte. A linear relationship between the CAP concentration and current response was obtained under the optimized experimental conditions, with a wide linear range and a limit of detection (LOD) of 2.41 nmol/L. Cu-BCN/GCE exhibited high stability, reproducibility, and repeatability. In the presence of various organic and inorganic species, the influence of the Cu-BCN-based sensor on the current response of CAP was less than 5%. Notably, the prepared sensor exhibited excellent performance in real-water samples, with satisfactory recovery.
Collapse
Affiliation(s)
- Yan Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Meng Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jianru Su
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xue Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohai Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yimin Huang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| |
Collapse
|
5
|
Li M, Wang X, Zhu Y, Jia X, Zhang S, Wang H, Li Y, Hu G. Fe2O3-decorated boron/nitrogen-co-doped carbon nanosheets as an electrochemical sensing platform for ultrasensitive determination of paraquat in natural water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Morooka T, Sagara T. Electrowetting of Hydrofluoroether Liquid Droplet at a Gold Electrode/Water Interface: Significance of Lower Adhesion Energy and Static Friction Energy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9685-9692. [PMID: 32787114 DOI: 10.1021/acs.langmuir.0c00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We explored the electrowetting behavior of a hydrofluoroester solvent, Novec 7100 (Novec), as a liquid droplet on a Au(111) electrode in water (0.05 M KClO4). Comparison with the electrowetting of hexadecane (HD) highlighted the significance of the lower adhesion energy and static friction energy of Novec than those of HD. The electrode potential-dependent contact angle θ of a Novec droplet showed little hysteresis. When potentials were set by means of potential steps, a Novec droplet increased its θ at more positive potentials than the potential of zero charge (pzc) of the Au(111) electrode. We found that the key factor of the electrowetting behavior for Novec is its low adhesion energy and static friction energy. The static friction energy of the oils to the Au(111) electrode surface was evaluated by a comparative analysis of the potential dependence of the interfacial tension at the solid/water interface, ΔγS/W-E curve, calculated from electrochemical surface charge data and the experimental cos θ-E curve: 2.6 mN/m for HD and 0.95 mN/m for Novec. When Br- was added in the aqueous solution to allow its adsorption on the Au surface surrounding a Novec droplet, the potential of maximum cos θ was shifted to negative. Overall, although the Novec droplet showed a narrower range of θ change than a HD droplet, the Novec droplet seldom got stuck to the surface as far as potential step was used, reflecting the narrower plateau region of θ near the pzc. Also, the specific adsorption of a coexistent anion was a significant factor of θ. This work has featured the significance of a slippy droplet on an electrode surface, giving an impact on the technology of microfluid transportation control by electric potentials.
Collapse
Affiliation(s)
- Tetsuro Morooka
- Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Takamasa Sagara
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|