1
|
Venkatesha A, Seth D, Varma RM, Das S, Agarwal M, Haider MA, Bhattacharyya AJ. Probing the Na
+
/Li
+
‐ions Insertion Mechanism in an Aqueous Mixed‐Ion Rechargeable Batteries with NASICON‐NaTi
2
(PO
4
)
3
Anode and Olivine‐LiFePO
4
Cathode. ChemElectroChem 2022. [DOI: 10.1002/celc.202201013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Akshatha Venkatesha
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012 India
| | - Deepak Seth
- Renewable Energy and Chemicals Laboratory Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016 India
| | - Rahul Mahavir Varma
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012 India
| | - Suman Das
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012 India
| | - Manish Agarwal
- Renewable Energy and Chemicals Laboratory Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016 India
| | - M. Ali Haider
- Renewable Energy and Chemicals Laboratory Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016 India
| | - Aninda J. Bhattacharyya
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru 560012 India
| |
Collapse
|
2
|
Luo P, Huang Z, Zhang W, Liu C, Liu G, Huang M, Xiao Y, Luo H, Qu Z, Dong S, Xia L, Tang H, An Q. Incorporating Near-Pseudocapacitance Insertion Ni/Co-Based Hexacyanoferrate and Low-Cost Metallic Zn for Aqueous K-Ion Batteries. CHEMSUSCHEM 2022; 15:e202200706. [PMID: 35666035 DOI: 10.1002/cssc.202200706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The limited availability of cathode materials with high specific capacity and significant cycling stability for aqueous K-ion batteries (AKIBs) hinder their further development owing to the large radius of K+ (1.38 Å). Prussian blue and its analogs with a three-dimensional frame structure possessing special energy storage mechanism are promising candidates as cathode materials for AKIBs. In this study, K0.2 Ni0.68 Co0.77 Fe(CN)6 ⋅ 1.8H2 O (KNCHCF) was prepared as a cathode material for AKIBs. Both the electrochemical activity of Co ions and the near-pseudocapacitance intercalation of KNCHCF enhance K+ storage. Therefore, KNCHCF exhibits a superior capacity maintenance rate of 86 % after 1000 cycles at a high current density of 3.0 A g-1 . The storage mechanism of K+ in AKIBs was revealed through ex situ X-ray diffraction, ex situ Fourier transform infrared spectroscopy, and ex situ X-ray photoelectron spectroscopy measurements. Moreover, the assembled K-Zn hybrid battery showed good cycling stability with 93.1 % capacity maintenance at 0.1 A g-1 after 50 cycles and a high energy density of 96.81 W h kg-1 . Hence, KNCHCF may be a potential material for the development of AKIBs.
Collapse
Affiliation(s)
- Ping Luo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
- Hubei Longzhong Laboratory, 441000, Xiangyang, Hubei, P. R. China
| | - Zhen Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Wenwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, Hubei, P. R. China
| | - Chang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Gangyuan Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, Hubei, P. R. China
- College of Materials Science and Engineering Shenzhen University, 1066 College Avenue, 518060, Shenzhen, Guangdong Province, P. R. China
| | - Yao Xiao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Hongyu Luo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Zhuo Qu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Shijie Dong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
- Hubei Longzhong Laboratory, 441000, Xiangyang, Hubei, P. R. China
- Wuhan Polytechnic University, 430023, Wuhan, P. R. China
| | - Lu Xia
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Han Tang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, Hubei, P. R. China
| |
Collapse
|
3
|
Egorova MI, Egorov AV, Baranauskaite VE, Chizhik VI. Local Structure and Molecular Mobility in Ternary System LiNO3–NaNO3–H2O at Room Temperature, According to Data from Molecular Dynamics Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lu Y, Zhang F, Lu X, Jiang H, Hu W, Liu L, Gai L. Electrolytes with Micelle-Assisted Formation of Directional Ion Transport Channels for Aqueous Rechargeable Batteries with Impressive Performance. NANOMATERIALS 2022; 12:nano12111920. [PMID: 35683775 PMCID: PMC9182126 DOI: 10.3390/nano12111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Low-cost and ecofriendly electrolytes with suppressed water reactivity and raised ionic conductivity are desirable for aqueous rechargeable batteries because it is a dilemma to decrease the water reactivity and increase the ionic conductivity at the same time. In this paper, Li2SO4–Na2SO4–sodium dodecyl sulfate (LN-SDS)-based aqueous electrolytes are designed, where: (i) Na+ ions dissociated from SDS increase the charge carrier concentration, (ii) DS−/SO42− anions and Li+/Na+ cations are capable of trapping water molecules through hydrogen bonding and/or hydration, resulting in a lowered melting point, (iii) Li+ ions reduce the Krafft temperature of LN-SDS, (iv) Na+ and SO42− ions increase the low-temperature electrolyte ionic conductivity, and (v) SDS micelle clusters are orderly aggregated to form directional ion transport channels, enabling the formation of quasi-continuous ion flows without (r.t.) and with (≤0 °C) applying voltage. The screened LN-SDS is featured with suppressed water reactivity and high ionic conductivity at temperatures ranging from room temperature to −15 °C. Additionally, NaTi2(PO4)3‖LiMn2O4 batteries operating with LN-SDS manifest impressive electrochemical performance at both room temperature and −15 °C, especially the cycling stability and low-temperature performance.
Collapse
Affiliation(s)
- Yanmin Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.L.); (F.Z.); (H.J.); (L.L.)
| | - Fengxiang Zhang
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.L.); (F.Z.); (H.J.); (L.L.)
| | - Xifeng Lu
- School of Energy Materials, Shandong Polytechnic College, Jining 172000, China;
| | - Haihui Jiang
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.L.); (F.Z.); (H.J.); (L.L.)
| | - Wei Hu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.L.); (F.Z.); (H.J.); (L.L.)
- Correspondence: (W.H.); (L.G.)
| | - Libin Liu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.L.); (F.Z.); (H.J.); (L.L.)
| | - Ligang Gai
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (Y.L.); (F.Z.); (H.J.); (L.L.)
- Correspondence: (W.H.); (L.G.)
| |
Collapse
|
5
|
Bargnesi L, Gigli F, Albanelli N, Toigo C, Arbizzani C. Crosslinked Chitosan Binder for Sustainable Aqueous Batteries. NANOMATERIALS 2022; 12:nano12020254. [PMID: 35055271 PMCID: PMC8780530 DOI: 10.3390/nano12020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
The increased percentage of renewable power sources involved in energy production highlights the importance of developing systems for stationary energy storage that satisfy the requirements of safety and low costs. Na ion batteries can be suitable candidates, specifically if their components are economic and safe. This study focuses on the development of aqueous processes and binders to prepare electrodes for sodium ion cells operating in aqueous solutions. We demonstrated the feasibility of a chitosan-based binder to produce freestanding electrodes for Na ion cells, without the use of organic solvents and current collectors in electrode processing. To our knowledge, it is the first time that water-processed, freestanding electrodes are used in aqueous Na ion cells, which could also be extended to other types of aqueous batteries. This is a real breakthrough in terms of sustainability, taking into account low risks for health and environment and low costs.
Collapse
|
6
|
Wu M, Ni W, Hu J, Ma J. NASICON-Structured NaTi 2(PO 4) 3 for Sustainable Energy Storage. NANO-MICRO LETTERS 2019; 11:44. [PMID: 34138016 PMCID: PMC7770786 DOI: 10.1007/s40820-019-0273-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 05/22/2023]
Abstract
Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.
Collapse
Affiliation(s)
- Mingguang Wu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Wei Ni
- Faculty of Technology, University of Oulu, 90014, Oulu, Finland.
- Panzhihua University, Panzhihua, 617000, People's Republic of China.
| | - Jin Hu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
7
|
Liu C, Wang X, Deng W, Li C, Chen J, Xue M, Li R, Pan F. Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunyi Liu
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Wenjun Deng
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Chang Li
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Jitao Chen
- Beijing National Laboratory for Molecular Sciences; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Mianqi Xue
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
- Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Rui Li
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Feng Pan
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
8
|
Liu C, Wang X, Deng W, Li C, Chen J, Xue M, Li R, Pan F. Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery. Angew Chem Int Ed Engl 2018. [PMID: 29537645 DOI: 10.1002/anie.201800479] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The rechargeable aqueous metal-ion battery (RAMB) has attracted considerable attention due to its safety, low costs, and environmental friendliness. Yet the poor-performance electrode materials lead to a low feasibility of practical application. A hybrid aqueous battery (HAB) built from electrode materials with selective cation channels could increase the electrode applicability and thus enlarge the application of RAMB. Herein, we construct a high-voltage K-Na HAB based on K2 FeFe(CN)6 cathode and carbon-coated NaTi2 (PO4 )3 (NTP/C) anode. Due to the unique cation selectivity of both materials and ultrafast ion conduction of NTP/C, the hybrid battery delivers a high capacity of 160 mAh g-1 at a 0.5 C rate. Considerable capacity retention of 94.3 % is also obtained after 1000 cycles at even 60 C rate. Meanwhile, high energy density of 69.6 Wh kg-1 based on the total mass of active electrode materials is obtained, which is comparable and even superior to that of the lead acid, Ni/Cd, and Ni/MH batteries.
Collapse
Affiliation(s)
- Chunyi Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenjun Deng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chang Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jitao Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mianqi Xue
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|