1
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Hassaan MA, El-Nemr MA, Elkatory MR, Ragab S, Niculescu VC, El Nemr A. Principles of Photocatalysts and Their Different Applications: A Review. Top Curr Chem (Cham) 2023; 381:31. [PMID: 37906318 PMCID: PMC10618379 DOI: 10.1007/s41061-023-00444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Safaa Ragab
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI Rm. Valcea, 4th Uzinei Street, 240050, Valcea, Romania
| | - Ahmed El Nemr
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| |
Collapse
|
3
|
Muchuweni E, Martincigh BS, Nyamori VO. Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Adv 2020; 10:44453-44469. [PMID: 35517133 PMCID: PMC9058590 DOI: 10.1039/d0ra08851j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
In the past few years, dye-sensitized solar cells (DSSCs) have received considerable research attention, as potential alternatives to the commonly used, but expensive, silicon-based solar cells owing to the low-cost, facile fabrication procedures, less impact on the environment, capability of working even under low incoming light levels, and flexibility of DSSCs. However, the relatively low power conversion efficiencies (PCEs) and poor long-term operational stability of DSSCs still limit their large-scale and commercial applications. As a consequence, this has prompted tremendous research effort towards the realization of high performance and sustainable devices, through tailoring of the properties of the various DSSC components, via approaches such as introducing novel materials and new synthesis techniques. Among these, the application of novel materials, especially carbon-based materials, such as graphene and its derivatives, is more appealing due to their excellent optoelectronic, mechanical, thermal and chemical properties, which give them ample potential to replace or modify the traditional materials that are commonly used in the fabrication of the various DSSC components. In addition, the low-cost, abundance, non-toxicity, large specific surface area, flexibility and superior stability of graphene-based materials have enabled their recent use as photoanodes, i.e., transparent conducting electrodes, semiconducting layers and dye-sensitizers, electrolytes and counter electrodes in DSSCs. Recently, the introduction of graphene-based materials into DSSCs resulted in a pronounced increase in PCE from ∼0.13 to above 12.00%. Thus, employing the recent breakthroughs can further improve the optoelectronic properties of the various DSSC components and, hence, close the gap between DSSCs and their silicon-based counterparts that are currently exhibiting desirable PCEs of above 26%. Therefore, this review focuses on the recent applications of graphene-based materials as photoanodes, electrolytes and counter electrodes, for the possible fabrication of all-carbon-based DSSCs. The limitations, merits and future prospects of graphene-based DSSCs are discussed, so as to improve their photovoltaic performance, sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Edigar Muchuweni
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
4
|
Cuong LV, Thinh ND, Nghia LTT, Khoa ND, Hung LK, Dat HH, Khang PT, Hoang NT, Chau PTL, Phong MT, Hieu NH. Synthesis of platinum/reduced graphene oxide composite pastes for fabrication of cathodes in dye-sensitized solar cells with screen-printing technology. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Remanan S, Padmavathy N, Ghosh S, Mondal S, Bose S, Das NC. Porous Graphene-based Membranes: Preparation and Properties of a Unique Two-dimensional Nanomaterial Membrane for Water Purification. SEPARATION AND PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1725048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sanjay Remanan
- Rubber Technology Center, Indian Institute of Technology, Kharagpur, India
| | - Nagarajan Padmavathy
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Sabyasachi Ghosh
- Rubber Technology Center, Indian Institute of Technology, Kharagpur, India
| | - Subhadip Mondal
- Rubber Technology Center, Indian Institute of Technology, Kharagpur, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Narayan Ch. Das
- Rubber Technology Center, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
6
|
Zhang Y, Wan Q, Yang N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903780. [PMID: 31663294 DOI: 10.1002/smll.201903780] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
7
|
Wang Y, Yang J, Sun S, Wang L, Guo T, Zhang D, Xue Z, Zhou X. PtNi nanoparticles supported on electrochemically reduced porous graphene oxide for methanol oxidation reaction. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Kamyabi MA, Mohammadian H, Jadali S, Moharramnezhad M. Hydrothermal Syntheses of NiO−GO Nanocomposite on 3D Nickel Foam as a Support for Pt Nanoparticles and its Superior Electrocatalytic Activity towards Methanol Oxidation. ELECTROANAL 2019. [DOI: 10.1002/elan.201800793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Ali Kamyabi
- Department of Chemistry, Colleges of ScienceUniversity of Zanjan P.O. Box 4537138791 Zanjan Iran
| | - Hoda Mohammadian
- Department of Chemistry, Colleges of ScienceUniversity of Zanjan P.O. Box 4537138791 Zanjan Iran
| | - Salma Jadali
- Department of Chemistry, Colleges of ScienceUniversity of Zanjan P.O. Box 4537138791 Zanjan Iran
| | - Mohsen Moharramnezhad
- Department of Chemistry, Colleges of ScienceUniversity of Zanjan P.O. Box 4537138791 Zanjan Iran
| |
Collapse
|
9
|
Rashid M, Hussain A, Shoaib M, Basit MA, Khan H, Kim YS. An amperometric hydrogen sensor based on Pt nanoparticles supported multi-wall carbon nanotubes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|