1
|
Zhang B, Qiu T, Li Y, Li Y, Yu F, Dong H, Wang YH, Li YG, Tan HQ. Well-Dispersed Manganese-Oxo Clusters as Anode Materials for High-Performance Lithium Ion Batteries. NANO LETTERS 2024; 24:11512-11519. [PMID: 39230027 DOI: 10.1021/acs.nanolett.4c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metal-oxo clusters show great promise in lithium ion battery applications as anode materials by virtue of their native nature of well-defined nanostructures and multielectron redox activities. However, their intrinsic unsatisfactory electrical conductivity and tendency to aggregation make them difficult to fully utilize. Herein, a well-dispersed Mn12O12(CH3COO)16(H2O)4 (denoted as Mn12) cluster is constructed by rationally adopting carbon dots (CDs) with nanosize and high conductivity as stabilizers. Thanks to the fully exposed redox sites of Mn12 clusters and additional interfacial energy storage mechanism, the optimized Mn12/CDs-1:20 anode delivers a high specific capacity of 1643 mAh g-1 at 0.2 A g-1 (0.25 C) and exhibits outstanding rate and cycling capabilities. This paper provides a green and efficient paradigm to synthesize well-dispersed manganese-oxo clusters for the first time and builds a new platform for cluster-based energy storage.
Collapse
Affiliation(s)
- Bitong Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Feiyang Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yong-Hui Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
2
|
Light-assisted synthesis of copper/cuprous oxide reinforced nanoporous silicon microspheres with boosted anode performance for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Cao L, Huang T, Cui M, Xu J, Xiao R. Facile and Efficient Fabrication of Branched Si@C Anode with Superior Electrochemical Performance in LIBs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005997. [PMID: 33705601 DOI: 10.1002/smll.202005997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
One-dimensional Si nanostructures with carbon coating (1D Si@C) show great potential in lithium ion batteries (LIBs) due to small volume expansion and efficient electron transport. However, 1D Si@C anode with large area capacity still suffers from limited cycling stability. Herein, a novel branched Si architecture is fabricated through laser processing and dealloying. The branched Si, composed of both primary and interspaced secondary dendrites with diameters under 100 nm, leads to improved area capacity and cycling stability. By coating a carbon layer, the branched Si@C anode shows gravimetric capacity of 3059 mAh g-1 (1.14 mAh cm-2 ). At a higher rate of 3 C, the capacity is 813 mAh g-1 , which retained 759 mAh g-1 after 1000 cycles at 1 C. The area capacity is further improved to 1.93 mAh cm-2 and remained over 92% after 100 cycles with a mass loading of 0.78 mg cm-2 . Furthermore, the full-cell configuration exhibits energy density of 405 Wh kg-1 and capacity retention of 91% after 200 cycles. The present study demonstrates that laser-produced dendritic microstructure plays a critical role in the fabrication of the branched Si and the proposed method provides new insights into the fabrication of Si nanostructures with facility and efficiency.
Collapse
Affiliation(s)
- Li Cao
- High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Ting Huang
- High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Mengya Cui
- High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Jiejie Xu
- High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Rongshi Xiao
- High-Power and Ultrafast Laser Manufacturing Lab Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
4
|
Deng L, Wu Z, You J, Yin Z, Ren W, Zhang P, Xu B, Zhou Y, Li J. The Si@C‐Network Electrode Prepared by an In Situ Carbonization Strategy with Enhanced Cycle Performance. ChemElectroChem 2020. [DOI: 10.1002/celc.202001388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li Deng
- College of Energy Xiamen University Xiamen 361005 China
| | - Zhan‐Yu Wu
- Laboratoire de Physico-Chimie des Surfaces Chimie-ParisTech-CNRS (UMR 8247) Ecole Nationale Supérieure de Chimie de Paris 11 rue Pierre et Marie Curie 75005 Paris France
| | - Jin‐Hai You
- College of Energy Xiamen University Xiamen 361005 China
| | - Zu‐Wei Yin
- College of Energy Xiamen University Xiamen 361005 China
| | - Wen‐Feng Ren
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | | | - Bin‐Bin Xu
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yao Zhou
- College of Energy Xiamen University Xiamen 361005 China
| | - Jun‐Tao Li
- College of Energy Xiamen University Xiamen 361005 China
| |
Collapse
|
5
|
A simple method to fabricate size and porosity tunable Si by Al–Si alloy as lithium ion battery anode material. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Nzabahimana J, Liu Z, Guo S, Wang L, Hu X. Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching. CHEMSUSCHEM 2020; 13:1923-1946. [PMID: 31912988 DOI: 10.1002/cssc.201903155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Lithium-ion batteries (LIBs) providing high energy and power densities as well as long cycle life are in high demand for various applications. Benefitting from its high theoretical specific charge capacity of ≈4200 mAh g-1 and natural abundance, Si is nowadays considered as one of the most promising anode candidates for high-energy-density LIBs. However, its huge volume change during cycling prevents its widespread commercialization. Si/C-based electrodes, fabricated through top-down mechanical-milling technique and etching, could be particularly promising since they can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability. In this Review, the current progresses in the top-down synthesis of Si/C anode materials for LIBs from inexpensive Si sources via the combination of low-cost, simple, scalable, and efficient ball-milling and etching processes are summarized. Various Si precursors as well as etching routes are highlighted in this Review. This review would be a guide for fabricating high-performance Si-based anodes.
Collapse
Affiliation(s)
- Joseph Nzabahimana
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Zhifang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Libin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
7
|
Yang Y, Yuan W, Kang W, Ye Y, Yuan Y, Qiu Z, Wang C, Zhang X, Ke Y, Tang Y. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. NANOSCALE 2020; 12:7461-7484. [PMID: 32227011 DOI: 10.1039/c9nr10652a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lithium-ion batteries (LIBs) play an important role in modern society. The low capacity of graphite cannot meet the demands of LIBs calling for high power and energy densities. Silicon (Si) is one of the most promising materials instead of graphite, because of its high theoretical capacity, low discharge voltage, low cost, etc. However, Si shows low conductivity of both ions and electrons and exhibits a severe volume change during cycles. Fabricating nano-sized Si and Si-based composites is an effective method to enhance the electrochemical performance of LIB anodes. Using a small size of Si nanoparticles (SiNPs) is likely to avoid the cracking of this material. One critical issue is to disclose different types and electrochemical effects of various coupled materials in the Si-based composites for anode fabrication and optimization. Hence, this paper reviews diverse SiNP-based composites for advanced LIBs from the perspective of composition and electrochemical effects. Almost all kinds of materials that have been coupled with SiNPs for LIB applications are summarized, along with their electrochemical influences on the composites. The integrated materials, including carbon materials, metals, metal oxides, polymers, Si-based materials, transition metal nitrides, carbides, dichalcogenides, alloys, and metal-organic frameworks (MOFs), are comprehensively presented.
Collapse
Affiliation(s)
- Yang Yang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chae S, Choi SH, Kim N, Sung J, Cho J. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. Angew Chem Int Ed Engl 2019; 59:110-135. [PMID: 30887635 DOI: 10.1002/anie.201902085] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Indexed: 12/12/2022]
Abstract
Silicon is considered a most promising anode material for overcoming the theoretical capacity limit of carbonaceous anodes. The use of nanomethods has led to significant progress being made with Si anodes to address the severe volume change during (de)lithiation. However, less progress has been made in the practical application of Si anodes in commercial lithium-ion batteries (LIBs). The drastic increase in the energy demands of diverse industries has led to the co-utilization of Si and graphite resurfacing as a commercially viable method for realizing high energy. Herein, we highlight the necessity for the co-utilization of graphite and Si for commercialization and discuss the development of graphite/Si anodes. Representative Si anodes used in graphite-blended electrodes are covered and a variety of strategies for building graphite/Si composites are organized according to their synthetic methods. The criteria for the co-utilization of graphite and Si are systematically presented. Finally, we provide suggestions for the commercialization of graphite/Si combinations.
Collapse
Affiliation(s)
- Sujong Chae
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong-Hyeon Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Namhyung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaekyung Sung
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
9
|
Chae S, Choi S, Kim N, Sung J, Cho J. Graphit‐ und‐Silicium‐Anoden für Lithiumionen‐ Hochenergiebatterien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sujong Chae
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Seong‐Hyeon Choi
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Namhyung Kim
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Jaekyung Sung
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Jaephil Cho
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| |
Collapse
|
10
|
Gan C, Zhang C, Liu P, Liu Y, Wen W, Liu B, Xie Q, Huang L, Luo X. Polymeric carbon encapsulated Si nanoparticles from waste Si as a battery anode with enhanced electrochemical properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|