1
|
Ngounoue Kamga FA, Hrubaru MM, Enache O, Diacu E, Draghici C, Tecuceanu V, Ungureanu EM, Nkemone S, Ndifon PT. Ni(II)-Salophen-Comprehensive Analysis on Electrochemical and Spectral Characterization and Biological Studies. Molecules 2023; 28:5464. [PMID: 37513334 PMCID: PMC10384438 DOI: 10.3390/molecules28145464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
New aspects of the Ni(II)-salophen complex and salophen ligand precursor were found during deep electrochemical and optical characterization, as well as biological studies for new pharmacological applications. Physicochemical and spectroscopic methods (1H- and 13C-NMR, FT-IR and UV-Vis, electrospray ionization mass spectroscopy, thermogravimetric analysis, and molar conductance measurements) were also used to prove that the salophen ligand acts as a tetradentate and coordinates to the central metal through nitrogen and oxygen atoms. The electrochemical behavior of the free Schiff salophen ligand (H2L) and its Ni(II) complex (Ni(II)L) was deeply studied in tetrabutylammonium perchlorate solutions in acetonitrile via CV, DPV, and RDE. Blue films on the surfaces of the electrodes as a result of the electropolymerization processes were put in evidence and characterized via CV and DPV. (H2L) and Ni(II)L complexes were tested for their antimicrobial, antifungal, and antioxidant activity, showing good antimicrobial and antifungal activity against several bacteria and fungi.
Collapse
Affiliation(s)
- Francis Aurelien Ngounoue Kamga
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Madalina-Marina Hrubaru
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Sector 6, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Oana Enache
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Elena Diacu
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Constantin Draghici
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Sector 6, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Victorita Tecuceanu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Sector 6, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Eleonora-Mihaela Ungureanu
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Stephanie Nkemone
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
| | - Peter T Ndifon
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
| |
Collapse
|
2
|
Tomczyk D, Seliger P, Bukowski W, Bester K. The Influence of Electrolyte Type on Kinetics of Redox Processes in the Polymer Films of Ni(II) Salen-Type Complexes. Molecules 2022; 27:1812. [PMID: 35335175 PMCID: PMC8954381 DOI: 10.3390/molecules27061812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Electrodes modified with polymers derived from the complexes [Ni(salcn)], [Ni(salcn(Me))] and [Ni(salcn(Bu))] were obtained in order to study the kinetics of electrode processes occurring in polymer films, depending on the thickness of the films, the type of electrolyte and the solvent. FTIR and EQCM methods were used to determine the type of mass transported into polymer films during anode processes and the number of moles of ions and solvent. The rate of charge transport through films was determined by the cyclic voltammetry method, by the quantity cD1/2. It was shown that the charge transport was determined by the transport of anions. The kinetics were most efficient for poly[Ni(salcn(Bu))] modified electrodes, obtained from TBAPF6 and working in TBAClO4 and TBABF4. It was also shown that a solvent with a higher DN value and lower viscosity (MeCN) facilitated the transport of the charge through polymer films.
Collapse
Affiliation(s)
- Danuta Tomczyk
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland;
| | - Piotr Seliger
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland;
| | - Wiktor Bukowski
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszów, Poland; (W.B.); (K.B.)
| | - Karol Bester
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszów, Poland; (W.B.); (K.B.)
| |
Collapse
|
3
|
Reversible Redox Processes in Polymer of Unmetalated Salen-Type Ligand: Combined Electrochemical in Situ Studies and Direct Comparison with Corresponding Nickel Metallopolymer. Int J Mol Sci 2022; 23:ijms23031795. [PMID: 35163715 PMCID: PMC8836782 DOI: 10.3390/ijms23031795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Most non-metalized Salen-type ligands form passivation thin films on electrode surfaces upon electrochemical oxidation. In contrast, the H2(3-MeOSalen) forms electroactive polymer films similarly to the corresponding nickel complex. There are no details of electrochemistry, doping mechanism and charge transfer pathways in the polymers of pristine Salen-type ligands. We studied a previously uncharacterized electrochemically active polymer of a Salen-type ligand H2(3-MeOSalen) by a combination of cyclic voltammetry, in situ ultraviolet-visible (UV-VIS) spectroelectrochemistry, in situ electrochemical quartz crystal microbalance and Fourier Transform infrared spectroscopy (FTIR) spectroscopy. By directly comparing it with the polymer of a Salen-type nickel complex poly-Ni(3-MeOSalen) we elucidate the effect of the central metal atom on the structure and charge transport properties of the electrochemically doped polymer films. We have shown that the mechanism of charge transfer in the polymeric ligand poly-H2(3-MeOSalen) are markedly different from the corresponding polymeric nickel complex. Due to deviation from planarity of N2O2 sphere for the ligand H2(3-MeOSalen), the main pathway of electron transfer in the polymer film poly-H2(3-MeOSalen) is between π-stacked structures (the π-electronic systems of phenyl rings are packed face-to-face) and C-C bonded phenyl rings. The main way of electron transfer in the polymer film poly-Ni(3-MeOSalen) is along the polymer chain, while redox processes are ligand-based.
Collapse
|
4
|
Tomczyk D, Bukowski W, Bester K, Kaczmarek M. Electrocatalytic Properties of Ni(II) Schiff Base Complex Polymer Films. MATERIALS (BASEL, SWITZERLAND) 2021; 15:191. [PMID: 35009337 PMCID: PMC8745840 DOI: 10.3390/ma15010191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
Platinum electrodes were modified with polymers of the (±)-trans-N,N'-bis(salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn)]) and (±)-trans-N,N'-bis(3,3'-tert-Bu-salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn(Bu))]) complexes to study their electrocatalytic and electroanalytical properties. Poly[Ni(salcn)] and poly[Ni(salcn(Bu))]) modified electrodes catalyze the oxidation of catechol, aspartic acid and NO2-. In the case of poly[Ni(salcn)] modified electrodes, the electrocatalysis process depends on the electroactive surface coverage. The films with low electroactive surface coverage are only a barrier in the path of the reducer to the electrode surface. The films with more electroactive surface coverage ensure both electrocatalysis inside the film and oxidation of the reducer directly on the electrode surface. In the films with the most electroactive surface coverage, electrocatalysis occurs only at the polymer-solution interface. The analysis was based on cyclic voltammetry, EQCM (electrochemical quartz crystal microbalance) and rotating disc electrode method.
Collapse
Affiliation(s)
- Danuta Tomczyk
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Lodz, Poland;
| | - Wiktor Bukowski
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszow, Poland; (W.B.); (K.B.)
| | - Karol Bester
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszow, Poland; (W.B.); (K.B.)
| | - Michalina Kaczmarek
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Lodz, Poland;
| |
Collapse
|
5
|
Uranyl Salen-Type Complex as Co-catalyst for Electrocatalytic Oxidation of Ethanol. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00697-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Campo-Cobo LF, Pérez-Urbano ML, Gutiérrez-Valencia TM, Hoyos-Saavedra OL, Cuervo-Ochoa G. Selective Extraction of Gold with Polymeric Inclusion Membranes Based on Salen Ligands with Electron- Accepting Substituents. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01924-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chepurnaya IA, Karushev MP, Alekseeva EV, Lukyanov DA, Levin OV. Redox-conducting polymers based on metal-salen complexes for energy storage applications. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal-salen polymers are electrochemically active metallopolymers functionalized with multiple redox centers, with a potential for high performance in various fields such as heterogeneous catalysis, chemical sensors, energy conversion, saving, and storage. In light of the growing world demand for the development of superior energy storage systems, the prospects of employing these polymers for advancing the performance of supercapacitors and lithium-ion batteries are particularly interesting. This article provides a general overview of the results of investigating key structure-property relationships of metal-salen polymers and using them to design polymer-modified electrodes with improved energy storage characteristics. The results of independent and collaborative studies conducted by the members of two research groups currently affiliated to the Saint–Petersburg State University and the Ioffe Institute, respectively, along with the related data from other studies are presented in this review.
Collapse
Affiliation(s)
| | | | - Elena V. Alekseeva
- Institute of Chemistry, Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Daniil A. Lukyanov
- Institute of Chemistry, Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Oleg V. Levin
- Institute of Chemistry, Saint Petersburg State University , Saint Petersburg , Russian Federation
| |
Collapse
|
8
|
Yankin AN, Lukyanov DA, Beletskii EV, Bakulina OY, Vlasov PS, Levin OV. Aryl‐Aryl Coupling of Salicylic Aldehydes through Oxidative CH‐activation in Nickel Salen Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrei N. Yankin
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Daniil A. Lukyanov
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Evgenii V. Beletskii
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Olga Yu. Bakulina
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Petr S. Vlasov
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Oleg V. Levin
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| |
Collapse
|
9
|
Karmakar M, Chattopadhyay S. A comprehensive overview of the orientation of tetradentate N2O2 donor Schiff base ligands in octahedral complexes of trivalent 3d metals. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang J, Xie J, Wang L, Jiang Y, Zhang N. The effect of phenolic compounds on salicylaldimine nickel-catalyzed ethylene oligomerization. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A salen nickel complex has been prepared in good yield with ethylenediamine, salicylaldehyde, and NiCl2·6H2O as raw materials. The structure of the complex was characterized by FTIR, 1H NMR, UV, and ESI-MS. Upon activation with methylaluminoxane (MAO), the precatalyst showed high activity for ethylene oligomerization. To reduce the simultaneous production of insoluble polymers during the nickel-catalyzed ethylene oligomerization, a series of phenolic compounds were introduced as modifiers for the production of linear α-olefins. The researched result showed that the phenolic compounds have a significant impact on the selectivity of oligomers and the concentration of polymers. With the increase of phenolic compounds, the content of polymers decreased and the distribution of oligomers gradually shifted toward lighter olefins. The sterically hindered 4-tert-butyphenol proved to be an especially efficient polymer-retarding modifier among the studied phenolic compounds in this work. Furthermore, the retarding effect of phenolic compounds toward insoluble polymers may be mainly related to their interaction with MAO, giving rise to larger MAO aggregates.
Collapse
Affiliation(s)
- Jun Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
| | - Junyi Xie
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
| | - Libo Wang
- Daqing Chemical Research Center of Petrochemical Research Institute, Daqing, 163714, China
| | - Yan Jiang
- Daqing Chemical Research Center of Petrochemical Research Institute, Daqing, 163714, China
| | - Na Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
| |
Collapse
|