• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619599)   Today's Articles (30)   Subscriber (49403)
For: Liu S, Smith KC. Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Number Cited by Other Article(s)
1
Outflow Geometry for Electrochemical Desalination Cells. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
2
Shi C, Wang H, Li A, Zhu G, Zhao X, Wu F. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization. WATER RESEARCH 2023;230:119517. [PMID: 36608524 DOI: 10.1016/j.watres.2022.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
3
Gabitto JF, Tsouris C. A review of transport models in charged porous electrodes. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]  Open
4
Liu R, Luo J, Yao S, Yang Y. Three-dimensional lattice Boltzmann simulation of reactive transport and ion adsorption processes in battery electrodes of cation intercalation desalination cells. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
5
Shrivastava A, Do VQ, Smith KC. Efficient, Selective Sodium and Lithium Removal by Faradaic Deionization Using Symmetric Sodium Titanium Vanadium Phosphate Intercalation Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022;14:30672-30682. [PMID: 35776554 DOI: 10.1021/acsami.2c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
6
Yao S, Luo J, Liu R, Shen X, Huang X. Microscopic study of ion transport in the porous electrode of a desalination battery based on the lattice Boltzmann method. NEW J CHEM 2022. [DOI: 10.1039/d1nj04770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
Reale ER, Regenwetter L, Agrawal A, Dardón B, Dicola N, Sanagala S, Smith KC. Low porosity, high areal-capacity Prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control. WATER RESEARCH X 2021;13:100116. [PMID: 34505051 PMCID: PMC8414176 DOI: 10.1016/j.wroa.2021.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
8
Quantifying the kinetics-energetics performance tradeoff in bipolar membrane electrodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
9
Xu Y, Zhou H, Wang G, Zhang Y, Zhang H, Zhao H. Selective Pseudocapacitive Deionization of Calcium Ions in Copper Hexacyanoferrate. ACS APPLIED MATERIALS & INTERFACES 2020;12:41437-41445. [PMID: 32820894 DOI: 10.1021/acsami.0c11233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
10
Wang L, Zhang C, He C, Waite TD, Lin S. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis. WATER RESEARCH 2020;181:115917. [PMID: 32505888 DOI: 10.1016/j.watres.2020.115917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
11
Wang R, Lin S. Thermodynamic reversible cycles of electrochemical desalination with intercalation materials in symmetric and asymmetric configurations. J Colloid Interface Sci 2020;574:152-161. [DOI: 10.1016/j.jcis.2020.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/23/2023]
12
Dai J, Win Pyae NL, Chen F, Liang M, Wang S, Ramalingam K, Zhai S, Su CY, Shi Y, Tan SC, Zhang L, Chen Y. Zinc-Air Battery-Based Desalination Device. ACS APPLIED MATERIALS & INTERFACES 2020;12:25728-25735. [PMID: 32368888 DOI: 10.1021/acsami.0c02822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
13
Dai J, Wang J, Hou X, Ru Q, He Q, Srimuk P, Presser V, Chen F. Dual-Zinc Electrode Electrochemical Desalination. CHEMSUSCHEM 2020;13:2792-2798. [PMID: 32048442 PMCID: PMC7318675 DOI: 10.1002/cssc.202000188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Indexed: 05/14/2023]
14
Volfkovich YM. Capacitive Deionization of Water (A Review). RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520010097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
15
Lin S. Energy Efficiency of Desalination: Fundamental Insights from Intuitive Interpretation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:76-84. [PMID: 31816233 DOI: 10.1021/acs.est.9b04788] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
16
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019;165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
17
Wang L, Lin S. Theoretical framework for designing a desalination plant based on membrane capacitive deionization. WATER RESEARCH 2019;158:359-369. [PMID: 31055016 DOI: 10.1016/j.watres.2019.03.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
18
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019;150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
19
Shrivastava A, Liu S, Smith KC. Linking capacity loss and retention of nickel hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions. Phys Chem Chem Phys 2019;21:20177-20188. [DOI: 10.1039/c9cp04115j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Byles BW, Hayes-Oberst B, Pomerantseva E. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2018;10:32313-32322. [PMID: 30182718 DOI: 10.1021/acsami.8b09638] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA