1
|
Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203856. [PMID: 36192164 PMCID: PMC9631069 DOI: 10.1002/advs.202203856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Electronic textiles (e-textiles) have drawn significant attention from the scientific and engineering community as lightweight and comfortable next-generation wearable devices due to their ability to interface with the human body, and continuously monitor, collect, and communicate various physiological parameters. However, one of the major challenges for the commercialization and further growth of e-textiles is the lack of compatible power supply units. Thin and flexible supercapacitors (SCs), among various energy storage systems, are gaining consideration due to their salient features including excellent lifetime, lightweight, and high-power density. Textile-based SCs are thus an exciting energy storage solution to power smart gadgets integrated into clothing. Here, materials, fabrications, and characterization strategies for textile-based SCs are reviewed. The recent progress of textile-based SCs is then summarized in terms of their electrochemical performances, followed by the discussion on key parameters for their wearable electronics applications, including washability, flexibility, and scalability. Finally, the perspectives on their research and technological prospects to facilitate an essential step towards moving from laboratory-based flexible and wearable SCs to industrial-scale mass production are presented.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
2
|
TMP/Pd Complex Immobilized on Graphene Oxide for Efficient Pseudocapacitive Energy Storage with Combined Experimental and DFT Study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Huang D, Lu Z, Xu Q, Liu X, Yi W, Gao J, Chen Z, Wang X, Fu X. TiO2 nanoflowers@Au@MnO2 core-shell composite based on modified Ti foil for flexible supercapacitor electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Xu W, Liu L, Weng W. High-performance supercapacitor based on MnO/carbon nanofiber composite in extended potential windows. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Abstract
Activated carbon (AC) was synthesized with various weight ratios of manganese dioxide (MO) through a simple hydrothermal approach. The electrochemical performance of the synthesized activated carbon/MnO2 composites was investigated. The effect of the activated carbon/MnO2 (AM) ratio on the electrochemical properties of the activated carbon/MnO2 composites and the pore structure was also examined. The results show that the specific capacitance of the activated carbon material has been improved after the addition of MO. The as-synthesized composite material exhibits specific capacitance of 60.3 F g−1 at 1 A g−1, as well as stable cycle performance and 99.6% capacitance retention over 5000 cycles.
Collapse
|
7
|
Tian Y, Lian X, Wu Y, Guo W, Wang S. The morphology controlled growth of Co 11(HPO 3) 8(OH) 6 on nickel foams for quasi-solid-state supercapacitor applications. CrystEngComm 2020. [DOI: 10.1039/d0ce00885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co11(HPO3)8(OH)6 microstructures with different morphologies growing on NF were synthesized under different conditions, and the flower-like sample presents excellent electrochemical properties.
Collapse
Affiliation(s)
- Yamei Tian
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| | - Xiaojuan Lian
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| | - Yueli Wu
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| | - Wei Guo
- Institute of Energy Innovation
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- PR China
| | - Shuang Wang
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| |
Collapse
|
8
|
|
9
|
Wang X, Chen L, Zhang S, Chen X, Li Y, Liu J, Lu F, Tang Y. Compounding δ-MnO2 with modified graphene nanosheets for highly stable asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M = Fe, Co and Ni) doping. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.174] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Jiang H, Wang Z, Yang Q, Tan L, Dong L, Dong M. Ultrathin Ti 3C 2T x (MXene) Nanosheet-Wrapped NiSe 2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2019; 11:31. [PMID: 34137972 PMCID: PMC7770682 DOI: 10.1007/s40820-019-0261-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/15/2019] [Indexed: 05/20/2023]
Abstract
Metal selenides, such as NiSe2, have exhibited great potentials as multifunctional materials for energy storage and conversation. However, the utilization of pure NiSe2 as electrode materials is limited by its poor cycling stability, low electrical conductivity, and insufficient electrochemically active sites. To remedy these defects, herein, a novel NiSe2/Ti3C2Tx hybrid with strong interfacial interaction and electrical properties is fabricated, by wrapping NiSe2 octahedral crystal with ultrathin Ti3C2Tx MXene nanosheet. The NiSe2/Ti3C2Tx hybrid exhibits excellent electrochemical performance, with a high specific capacitance of 531.2 F g-1 at 1 A g-1 for supercapacitor, low overpotential of 200 mV at 10 mA g-1, and small Tafel slope of 37.7 mV dec-1 for hydrogen evolution reaction (HER). Furthermore, greater cycling stabilities for NiSe2/Ti3C2Tx hybrid in both supercapacitor and HER have also been achieved. These significant improvements compared with unmodified NiSe2 should be owing to the strong interfacial interaction between NiSe2 octahedral crystal and Ti3C2Tx MXene, which provides enhanced conductivity, fast charge transfer as well as abundant active sites, and highlight the promising potentials in combinations of MXene with metal selenides for multifunctional applications such as energy storage and conversion.
Collapse
Affiliation(s)
- Hanmei Jiang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus-C, Denmark
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Zegao Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus-C, Denmark
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qian Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus-C, Denmark.
| |
Collapse
|
12
|
A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.096] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|