1
|
Liu Q, Zhang F, Pei M, Jiang W. RGO/CuCl-Based Flexible Gas Sensor for High-Concentration Carbon Monoxide Gas Detection at Room Temperature. MICROMACHINES 2024; 15:737. [PMID: 38930707 PMCID: PMC11206111 DOI: 10.3390/mi15060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Carbon monoxide (CO) gas sensors are widely used, especially for environmental monitoring in confined spaces such as the landscape of mining cave ruins in mining parks, which is essential for ensuring the health and safety of tourists and staff. In this paper, a flexible CO gas sensor based on polyimide, interdigital electrodes, and reduced graphene oxide (RGO)/cuprous chloride (CuCl) composite film is designed and manufactured for reliable room temperature detection of high-concentration CO gas. The structure size of RGO/CuCl gas-sensitive film is 5 × 5 mm. The RGO with a 62.65% C-C bond is prepared by the thermal reduction method. The test results show that the sensor has a high response in the range of 400-2000 ppm CO gas concentration, and the maximum response is 1.56. The linear correlation coefficient of the sensor is 0.981, which indicates that the sensor has good output response characteristics. The response time of the sensor for 400 ppm CO gas is 332 s, which indicates that the sensor has a fast response rate. Furthermore, compared with other gases, the sensor shows higher gas selectivity for CO gas. This sensor has the characteristics of small size and easy attachment; therefore, it can be installed on the shoulder or helmet of tourists' safety suits, providing personalized real-time warning prompts for tourists' physical health status.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Humanities and Social Science, Xi’an Jiaotong University, Xi’an 710049, China; (Q.L.); (W.J.)
| | - Fuzheng Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
| | - Mengfei Pei
- Department of Heritage Management, Emperor Qinshihuang’s Mausoleum Site Museum, Xi’an 710600, China;
| | - Weile Jiang
- School of Humanities and Social Science, Xi’an Jiaotong University, Xi’an 710049, China; (Q.L.); (W.J.)
- Joint School of Designed and Invovation, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
2
|
Su X, Guo Y, Yan L, Wang Q, Zhang W, Li X, Song W, Li Y, Liu G. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Sera Y, Seto S, Isobe K, Hashimoto H. Development of highly active hydrogen evolution reaction (HER) catalysts composed of reduced graphene oxide and amorphous molybdenum sulfides derived from (NH4)2MoOmS4-m (m = 0, 1, and 2). J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Katowah DF, Mohammed GI, Al‐Eryani DA, Osman OI, Sobahi TR, Hussein MA. Fabrication of conductive cross‐linked polyaniline/
G‐MWCNTS core‐shell
nanocomposite: A selective sensor for trace determination of chlorophenol in water samples. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Dyab A. Al‐Eryani
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied Science Thamar University Dhamar Yemen
| | - Osman I. Osman
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Chemistry Department, Faculty of Science University of Khartoum Khartoum Sudan
| | - Tariq R. Sobahi
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Polymer chemistry Lab., Chemistry Department, Faculty of Science Assiut University Assiut Egypt
| |
Collapse
|
5
|
Juan P, Liang J, Chen T, Zhang Q, Peng W, Li Y, Zhang F, Fan X. Sulfur-Rich Molybdenum Sulfide Grown on Porous N-Doped Graphene for Efficient Hydrogen Evolution. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peng Juan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Junmei Liang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Zhang L, Yin J, Wei K, Li B, Jiao T, Chen Y, Zhou J, Peng Q. Fabrication of hierarchical SrTiO 3@MoS 2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions. NANOTECHNOLOGY 2020; 31:205604. [PMID: 31995537 DOI: 10.1088/1361-6528/ab70ff] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The construction of low-cost, high-performance electrocatalysts instead of platinum catalysts is critical to solving the energy crisis. Here, using simple electrospinning and hydrothermal methods, new MoS2 nanosheets on SrTiO3 nanofibers (NFs) and 2D SrTiO3@MoS2 heterostructure NFs are synthesized. In addition, SrTiO3@MoS2 heterostructure NFs are compared with bare SrTiO3 NFs and MoS2 nanosheets. Importantly, the prepared SrTiO3@MoS2 heterostructure shows better hydrogen-evolution reaction performance than other MoS2-based electrocatalysts with an overpotential of 165 mV at 10 mA cm-2, a Tafel slope of 81.41 mV dec-1, and long-term electrochemical durability of 3000 cycles. Therefore, the present work strongly demonstrates the positive synergy between SrTiO3 NFs and layered MoS2, and also provides a strategy for preparing low-cost and high-activity water-decomposition electrocatalysts.
Collapse
Affiliation(s)
- Lun Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China. Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu Q, Jiang T, Li H, Li M. Anchoring acetylene black on graphene for growing of molybdenum disulfide as high performance electrocatalysts in hydrogen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Synergy effect of carbon nanotube and graphene hydrogel on highly efficient quantum dot sensitized solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Guo Y, Xing X, Shang Y, Gao B, Zhang L, Yue Q, Qian L, Wang Z. Multiple bimetallic (Al-La or Fe-La) hydroxides embedded in cellulose/graphene hybrids for uptake of fluoride with phosphate surroundings. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120634. [PMID: 31299631 DOI: 10.1016/j.jhazmat.2019.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/10/2023]
Abstract
To insight into the selective adsorption mechanism of fluoride in the bimetallic system, Fe-La or Al-La composites were comparatively embedded onto the cellulose/graphene hybrids (CG hybrids) to fabricate the Fe-La@CG hybrids or Al-La@CG hybrids for fluoride uptake with existing phosphate. The results showed that Al-La@CG hybrids were mainly in the amorphous nature, while Fe-La@CG hybrids have the identical diffraction peaks as compared with those of hydrated lanthanum oxides (HLO) and hydrated iron oxides (HFO). Fluoride capture by Al-La@CG and Fe-La@CG hybrids followed the similar tendencies with the pH altering, but the adsorption performance of Al-La@CG hybrids was better than that of Fe-La@CG hybrids at the same pH levels. Adsorption of fluoride onto Al-La@CG hybrids exhibited less sensitivity and high selectivity with existing phosphate as compared with that of Fe-La@CG hybrids, which further indicated that the Al-La@CG hybrids were more preferable for fluoride adsorption. The fraction areas of La-F and Al-F accounted for 79.1 % and 20.9%, which indicated that the fluoride onto the Al-La@CG hybrids was mainly based on the La species. Similarly, La-F in exhausted Fe-La@CG hybrids accounted for 55.6%, higher than that (44.4%) of Fe-F.
Collapse
Affiliation(s)
- Yali Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Xu Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| | - Yanan Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Lei Zhang
- Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control (Sinopec Petroleum Engineering Corporation), PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Li Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Zihang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| |
Collapse
|