1
|
Ji B, Li W, Zhang F, Geng P, Li CM. MOF-Derived Transition Metal Phosphides for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409273. [PMID: 40007089 DOI: 10.1002/smll.202409273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Indexed: 02/27/2025]
Abstract
Transition metal phosphides (TMPs) in supercapacitors (SCs) applications are increasingly attracting attention because of their exceptional electrochemical performance. MOF-derived TMPs, possess high specific surface areas, rich pore structure, and controllable chemical compositions, offering promising opportunities for supercapacitor applications. There is a wide variety of MOF-derived TMPs, and they exhibit different properties in SCs. This work mainly categorizes MOF-derived TMPs (FexP, CoxP, NixP, NixCoyP, CuxP), and then outlines the latest research advancements regarding their use as electrode materials in SCs, including the latest results of synthesis methods and structural modulation. Subsequently, the applications of MOF-derived TMPs as electrode materials in SCs are discussed. At the end, perspectives of future developments and key challenges in the applications of MOF-derived TMPs in SCs are highlighted, with the aim of providing guidance for future research.
Collapse
Affiliation(s)
- Bing Ji
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Wenxiang Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Feiqing Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Pengbiao Geng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| |
Collapse
|
2
|
Ahmadi R, Abnavi A, Hasani A, Ghanbari H, Mohammadzadeh MR, Fawzy M, Kabir F, Adachi MM. Pseudocapacitance-Induced Synaptic Plasticity of Tribo-Phototronic Effect Between Ionic Liquid and 2D MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304988. [PMID: 37939305 DOI: 10.1002/smll.202304988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Contact-induced electrification, commonly referred to as triboelectrification, is the subject of extensive investigation at liquid-solid interfaces due to its wide range of applications in electrochemistry, energy harvesting, and sensors. This study examines the triboelectric between an ionic liquid and 2D MoS2 under light illumination. Notably, when a liquid droplet slides across the MoS2 surface, an increase in the generated current and voltage is observed in the forward direction, while a decrease is observed in the reverse direction. This suggests a memory-like tribo-phototronic effect between ionic liquid and 2D MoS2 . The underlying mechanism behind this tribo-phototronic synaptic plasticity is proposed to be ion adsorption/desorption processes resulting from pseudocapacitive deionization/ionization at the liquid-MoS2 interface. This explanation is supported by the equivalent electrical circuit modeling, contact angle measurements, and electronic band diagrams. Furthermore, the influence of various factors such as velocity, step size, light wavelength and intensity, ion concentration, and bias voltage is thoroughly investigated. The artificial synaptic plasticity arising from this phenomenon exhibits significant synaptic features, including potentiation/inhibition, paired-pulse facilitation/depression, and short-term memory (STM) to long-term memory (LTM) transition. This research opens up promising avenues for the development of synaptic memory systems and intelligent sensing applications based on liquid-solid interfaces.
Collapse
Affiliation(s)
- Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Amin Abnavi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Hamidreza Ghanbari
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mohammad Reza Mohammadzadeh
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
3
|
Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Su H, Xiong T, Tan Q, Yang F, Appadurai PBS, Afuwape AA, Balogun MS(JT, Huang Y, Guo K. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1141. [PMID: 32531987 PMCID: PMC7353334 DOI: 10.3390/nano10061141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 01/11/2023]
Abstract
Vanadium nitride (VN) shows promising electrochemical properties as an energy storage devices electrode, specifically in supercapacitors. However, the pseudocapacitive charge storage in aqueous electrolytes shows mediocre performance. Herein, we judiciously demonstrate an impressive pseudocapacitor performance by hybridizing VN nanowires with pseudocapacitive 2D-layered MoS2 nanosheets. Arising from the interfacial engineering and pseudocapacitive synergistic effect between the VN and MoS2, the areal capacitance of VN/MoS2 hybrid reaches 3187.30 mF cm-2, which is sevenfold higher than the pristine VN (447.28 mF cm-2) at a current density of 2.0 mA cm-2. In addition, an asymmetric pseudocapacitor assembled based on VN/MoS2 anode and TiN coated with MnO2 (TiN/MnO2) cathode achieves a remarkable volumetric capacitance of 4.52 F cm-3 and energy density of 2.24 mWh cm-3 at a current density of 6.0 mA cm-2. This work opens a new opportunity for the development of high-performance electrodes in unfavorable electrolytes towards designing high areal-capacitance electrode materials for supercapacitors and beyond.
Collapse
Affiliation(s)
- Hailan Su
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Tuzhi Xiong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Qirong Tan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Fang Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Paul B. S. Appadurai
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Afeez A. Afuwape
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
| | - M.-Sadeeq (Jie Tang) Balogun
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China;
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.S.); (T.X.); (Q.T.); (F.Y.); (P.B.S.A.)
| |
Collapse
|
5
|
Peng L, Wei X, Song K, Peng H, Li L, Hu J, Yang Y, Zhang H, Xiao P. The effect of work function difference between cathode and anode materials on the potential window of the supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|