1
|
Meng H, Meng P, Liu Z, McMurtrie J, Xu J. Exclusive Coordination between Melem and Silver(I) Ions: From Irregular Aggregates to Nanofibers to Crystal Cubes. Inorg Chem 2024; 63:6980-6987. [PMID: 38565220 DOI: 10.1021/acs.inorgchem.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There is growing focus on metal-free molecules and polymers owing to their potential applications in various energy and catalysis-related applications. Melem (2,5,8-triamino-s-heptazine, C6H6N10) has emerged as a metal-free material for solar-to-fuel conversion. However, its reactivity with metal ions or organic molecules has never been reported although it possesses multiple supramolecular interaction sites. In this work, we report on the synthesis of a novel metal-organic coordination framework (melem-Ag) by simply introducing Ag+ into the aqueous suspension of aggregated melem particles. Notably, as the reaction progresses, the melem disappears, and the morphology of the newly formed complex spontaneously evolves from nanofibers to single-crystalline blocks, which possess the same chemical structure, indicating that the morphology evolution is driven by Ostwald ripening. The structure of melem-Ag displays infinite nanocages of triangular pyramids consisting of melem molecules and Ag+, linked via Ag-N coordinate bonding and Ag-Ag argentophilic interactions. It is noteworthy that Ag+ is the only transition-metal cation that reacts with melem suspensions, even in the presence of other transition-metal cations (Co2+, Ni2+, Cu2+, and Zn2+). The coordination of Ag+ to melem results in metal-to-ligand charge transfer (MLCT), resulting in a quenched photoluminescence and enhanced light absorption. Exposing the melem-Ag crystals to UV light for varying time intervals results in the formation of colorful powders, which may be used for Ag-decorated photocatalysts.
Collapse
Affiliation(s)
- Hang Meng
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peng Meng
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Zixuan Liu
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - John McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Preparation and Application of Nb 2O 5 Nanofibers in CO 2 Photoconversion. NANOMATERIALS 2021; 11:nano11123268. [PMID: 34947617 PMCID: PMC8704612 DOI: 10.3390/nano11123268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Increasing global warming due to NOx, CO2, and CH4, is significantly harming ecosystems and life worldwide. One promising methodology is converting pollutants into valuable chemicals via photocatalytic processes (by reusable photocatalysts). In this context, the present work aimed to produce a Nb2O5 photocatalyst nanofiber system by electrospinning to convert CO2. Based on the collected data, the calcination at 600 ∘C for 2 h resulted in the best condition to obtain nanofibers with homogeneous surfaces and an average diameter of 84 nm. As a result, the Nb2O5 nanofibers converted CO2 mostly into CO and CH4, reaching values around 8.5 μmol g−1 and 0.55 μmol g−1, respectively.
Collapse
|
3
|
Liu D, Zhou P, Bai H, Ai H, Du X, Chen M, Liu D, Ip WF, Lo KH, Kwok CT, Chen S, Wang S, Xing G, Wang X, Pan H. Development of Perovskite Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101605. [PMID: 34310054 DOI: 10.1002/smll.202101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoqiang Ai
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xinyu Du
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Mingpeng Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kin Ho Lo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
4
|
Dias JA, Andrade MAS, Santos HLS, Morelli MR, Mascaro LH. Lanthanum‐Based Perovskites for Catalytic Oxygen Evolution Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.202000451] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jeferson A. Dias
- Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCerUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Marcos A. S. Andrade
- Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIECUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Hugo L. S. Santos
- Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIECUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Márcio R. Morelli
- Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCerUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Lucia H. Mascaro
- Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIECUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| |
Collapse
|
5
|
Xiong T, Tan Z, Mi Y, Huang Q, Tan Y, Yin X, Hu F. On-site generated metal organic framework-deriving core/shell ZnCo 2O 4/ZnO nanoarray for better water oxidation. NANOTECHNOLOGY 2019; 30:495405. [PMID: 31443098 DOI: 10.1088/1361-6528/ab3e1d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high cost and elemental scarcity of precious metals has triggered a search for non-noble-metal catalysts for the oxygen evolution reaction (OER) process. Herein, with the assistance of metal organic frameworks (MOFs), a core/shell ZnCo2O4/ZnO nanoarray with an amorphous carbon protecting layer, grown on carbon fiber, was in situ topologically generated. The resulting catalyst shows much enhanced OER performance under alkaline condition, requiring as low as 279 mV of overpotential to reach 10 mA cm-2 current density. Our work may open up a new way for exploiting MOF-derived non-noble-metal electrocatalysts for various electrochemical applications.
Collapse
Affiliation(s)
- Ting Xiong
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Lu X, Li M, Wang H, Wang C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00799g] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We highlight the recent developments of electrospun nanomaterials with controlled morphology, composition and architecture for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Meixuan Li
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering
- Nanling Campus
- Jilin University
- Changchun 130025
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
9
|
Zhang Z, He B, Chen L, Wang H, Wang R, Zhao L, Gong Y. Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa 0.5Sr 0.5Co 2O 5+δ Nanorods. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38032-38041. [PMID: 30360054 DOI: 10.1021/acsami.8b12372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of an efficient, robust, and low-cost catalyst for water electrolysis is critically important for renewable energy conversion. Herein, we achieve a significant improvement in electrocatalytic activity for both the oxygen-evolution reaction (OER) and the hydrogen-evolution reaction (HER) by constructing a novel hierarchical PrBa0.5Sr0.5Co2O5+δ (PBSC)@FeOOH catalyst. The optimized PBSC@FeOOH-20 catalyst consisted of layered perovskite PBSC nanorods and 20 nm thick amorphous FeOOH nanoflakes exhibiting an excellent electrocatalytic activity for the OER and the HER in 0.1 M KOH media, delivering a current density of 10 mA cm-2 at overpotentials of 390 mV for the OER and 280 mV for the HER, respectively. The substantially enhanced performance is probably attributed to the hierarchical nanostructure, the good charge-transfer capability, and the strong electronic interactions of FeOOH and PBSC. Importantly, an alkaline electrolyzer-integrated PBSC@FeOOH-20 catalyst as both the anode and cathode shows a highly active overall water splitting with a low voltage of 1.638 V at 10 mA cm-2 and high stability during continuous operation. This study provides new insights into exploring efficient bifunctional catalysts for overall water splitting, and it suggests that the rational design of the oxyhydroxide/perovskite heterostructure shows great potential as a promising type of electrocatalysts.
Collapse
Affiliation(s)
- Zonghuai Zhang
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Beibei He
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Liangjian Chen
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Rui Wang
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| |
Collapse
|