1
|
Chen W, Wang Y, Wang F, Zhang Z, Li W, Fang G, Wang F. Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411802. [PMID: 39373284 DOI: 10.1002/adma.202411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Along with the booming research on zinc metal batteries (ZMBs) in recent years, operational issues originated from inferior interfacial reversibility have become inevitable. Presently, single-component electrolytes represented by aqueous solution, "water-in-salt," solid, eutectic, ionic liquids, hydrogel, or organic solvent system are hard to undertake independently the task of guiding the practical application of ZMBs due to their specific limitations. The hybrid electrolytes modulate microscopic interaction mode between Zn2+ and other ions/molecules, integrating vantage of respective electrolyte systems. They even demonstrate original Zn2+ mobility pattern or interfacial chemistries mechanism distinct from single-component electrolytes, providing considerable opportunities for solving electromigration and interfacial problems in ZMBs. Therefore, it is urgent to comprehensively summarize the zinc chemistries principles, characteristics, and applications of various hybrid electrolytes employed in ZMBs. This review begins with elucidating the chemical bonding mode of Zn2+ and interfacial physicochemical theory, and then systematically elaborates the microscopic solvent structure, Zn2+ migration forms, physicochemical properties, and the zinc chemistries mechanisms at the anode/cathode interfaces in each type of hybrid electrolytes. Among of which, the scotoma and amelioration strategies for the current hybrid electrolytes are actively exposited, expecting to provide referenceable insights for further progress of future high-quality ZMBs.
Collapse
Affiliation(s)
- Wenyong Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Li H, Li S, Hou R, Rao Y, Guo S, Chang Z, Zhou H. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem Soc Rev 2024; 53:7742-7783. [PMID: 38904425 DOI: 10.1039/d4cs00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.
Collapse
Affiliation(s)
- Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Ruilin Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Yan H, Li S, Zhong J, Li B. An Electrochemical Perspective of Aqueous Zinc Metal Anode. NANO-MICRO LETTERS 2023; 16:15. [PMID: 37975948 PMCID: PMC10656387 DOI: 10.1007/s40820-023-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Based on the attributes of nonflammability, environmental benignity, and cost-effectiveness of aqueous electrolytes, as well as the favorable compatibility of zinc metal with them, aqueous zinc ions batteries (AZIBs) become the leading energy storage candidate to meet the requirements of safety and low cost. Yet, aqueous electrolytes, acting as a double-edged sword, also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side. These reactions include hydrogen evolution reaction, passivation, and dendrites, resulting in poor Coulombic efficiency and short lifespan of AZIBs. A comprehensive review of aqueous electrolytes chemistry, zinc chemistry, mechanism and chemistry of parasitic reactions, and their relationship is lacking. Moreover, the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough. In this review, firstly, the chemistry of electrolytes, zinc anodes, and parasitic reactions and their relationship in AZIBs are deeply disclosed. Subsequently, the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes, and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed. Lastly, the perspectives on the future development direction of aqueous electrolytes, zinc anodes, and Zn/electrolyte interfaces are presented.
Collapse
Affiliation(s)
- Huibo Yan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Songmei Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jinyan Zhong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| | - Bin Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
4
|
Yin L, Xu Z, Yang G, Guo F, Guo W, Zhao S, Yang S. Electrospun VO 2/carbon fibers for aqueous zinc-ion batteries. RSC Adv 2023; 13:31667-31673. [PMID: 37908658 PMCID: PMC10614041 DOI: 10.1039/d3ra06395j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Aqueous zinc-ion batteries (AZIBs) have become one of the most potential energy storage devices due to their high safety and low cost. Vanadium oxide is an ideal cathode material for AZIBs because of its unique tunnel structure and multivalent nature. In this work, electrospun VO2/carbon fibers (VO2@CPAN) with a three-dimensional (3D) network are obtained by an electrospinning strategy combining with a controlled heat treatment. As cathode for AZIBs, the 3D network of the carbon fiber significantly improves the conductivity of VO2, avoids the agglomeration of VO2, and increases the stability of VO2. Therefore, VO2@CPAN delivers a specific capacity of 323.2 mA h g-1 at 0.2 A g-1, which is higher than pure VO2. At the same time, excellent capacity retention of 76.6% is obtained at high current density of 10 A g-1 after 3000 cycles.
Collapse
Affiliation(s)
- Liying Yin
- School of Food Science and Engineering, Changchun University Changchun 130022 China
| | - Zenglong Xu
- Materials Center for Energy and Photoelectrochemical Conversion, School of Material Science and Engineering, University of Jinan Jinan 250022 China
| | - Guangxu Yang
- Materials Center for Energy and Photoelectrochemical Conversion, School of Material Science and Engineering, University of Jinan Jinan 250022 China
| | - Fuhai Guo
- School of Food Science and Engineering, Changchun University Changchun 130022 China
| | - Wenhui Guo
- School of Food Science and Engineering, Changchun University Changchun 130022 China
| | - Songfang Zhao
- Materials Center for Energy and Photoelectrochemical Conversion, School of Material Science and Engineering, University of Jinan Jinan 250022 China
| | - Shuhua Yang
- Materials Center for Energy and Photoelectrochemical Conversion, School of Material Science and Engineering, University of Jinan Jinan 250022 China
| |
Collapse
|
5
|
|
6
|
|
7
|
Liu Z, Ren J, Wang F, Liu X, Zhang Q, Liu J, Kaghazchi P, Ma D, Chi Z, Wang L. Tuning Surface Energy of Zn Anodes via Sn Heteroatom Doping Enabled by a Codeposition for Ultralong Life Span Dendrite-Free Aqueous Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27085-27095. [PMID: 34080420 DOI: 10.1021/acsami.1c06002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aqueous Zn-ion batteries (AZBs) have been considered as one of the most promising large-scale energy storage systems, owing to the advantages of raw material abundance, low cost, and eco-friendliness. However, the severe growth of Zn dendrites leads to poor stability and low Coulombic efficiency of AZBs. Herein, to effectively inhibit the growth of Zn dendrites, a new strategy has been proposed, i.e., tuning the surface energy of the Zn anode. This strategy can be achieved by in situ doping of Sn heteroatoms in the lattice of metallic Zn via codeposition of Sn and Zn with a small amount of the SnCl2 electrolyte additive. Density functional theory calculations have suggested that Sn heteroatom doping can sharply decrease the surface free energy of the Zn anode. As a consequence, driven by the locally strong electric field, metallic Sn tends to deposit at the tips of the Zn anode, thus decreases the surface energy and growth of Zn at the tips, resulting in a dendrite-free Zn anode. The positive effect of the SnCl2 additive has been demonstrated in both the Zn∥Zn symmetric battery and the Zn/LFP and Zn/HATN full cell. This novel strategy can light a new way to suppress Zn dendrites for long life span Zn-ion batteries.
Collapse
Affiliation(s)
- Zenghua Liu
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junfeng Ren
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fanghui Wang
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaobin Liu
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Zhang
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Liu
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Payam Kaghazchi
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), Jülich D-52425, Germany
| | - Dingxuan Ma
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenzhen Chi
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
|
9
|
Huang J, Chi X, Du Y, Qiu Q, Liu Y. Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4008-4016. [PMID: 33433993 DOI: 10.1021/acsami.0c20241] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The side reaction and dendrite of a zinc anode in an aqueous electrolyte represent a huge obstacle for the development of rechargeable aqueous Zn batteries. An electrolyte with confined water is recognized to fundamentally stabilize the zinc anode. This work proposes acetamide/zinc perchlorate hexahydrate (AA/ZPH) ionic liquid (IL)-polyacrylamide (PAM) polymer electrolytes, here defined as IL-PAM. The novel Zn2+-conducting IL is able to accommodate trace water and can achieve both high conductivity (15.02 mS cm-1) and alleviation of side reactions (>90% reduction). Cross-linked PAM acts as the three-dimensional framework to suppress dendrites and obtain flexibility. As a result, the Zn anode with IL-PAM can cycle stably over 2000 h with a record highest cumulative capacity of 3000 mAh cm-2 and well-preserved morphology. Based on IL-PAM, the flexible LFP|Zn hybrid batteries can be successfully assembled and operate normally in series and parallel conditions. Moreover, the low volatility of IL and binding forces exerted by the PAM network endues IL-PAM with an anti-dehydration property. In a 50 °C unsealed environment, the weight loss of IL-PAM is about two-fifths of PAM hydrogel and an aqueous electrolyte, and the corresponding hybrid battery with IL-PAM can also prolong a 4 times longer lifespan.
Collapse
Affiliation(s)
- Jiaqi Huang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Chi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuexiu Du
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiliang Qiu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
10
|
Li M, Ran L, Knibbe R. Zn Electrodeposition by an In Situ Electrochemical Liquid Phase Transmission Electron Microscope. J Phys Chem Lett 2021; 12:913-918. [PMID: 33439668 DOI: 10.1021/acs.jpclett.0c03475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alternative battery technologies are required to meet growing energy demands and to solve the limitations of the present energy technologies. As such, it is necessary to look beyond lithium-ion batteries. Zinc batteries enable high power density while being sourced from abundant and cost-effective materials. In this paper, the effect of the applied current and electrolyte flow rate on the early stage of Zn dendrite formation was characterized by in situ electrochemical liquid phase transmission electron microscopy (EC-LPTEM). For the first time, the square root relation is revealed between time and Zn dendrite growth on the lateral direction, indicating a diffusion-limited growth. It is intriguing that a higher applied current leads to longer incubation time. In situ EC-LPTEM can provide a useful strategy for understanding characteristics of unstable dendritic growth. The finding can help rationalize the electrode engineering design and parameters selection to avoid dendrite formation.
Collapse
Affiliation(s)
- Ming Li
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Lingbing Ran
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Ruth Knibbe
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
|
12
|
Zhong X, Wang F, Ding Y, Duan L, Shi F, Wang C. Water-in-salt electrolyte Zn/LiFePO4 batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114193] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Shi F, Mang C, Liu H, Dong Y. Flexible and high-energy-density Zn/MnO2 batteries enabled by electrochemically exfoliated graphene nanosheets. NEW J CHEM 2020. [DOI: 10.1039/c9nj05433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemically exfoliated graphene nanosheets were proposed for flexible and high-performance Zn–MnO2 batteries without polymer binder and metal current collectors.
Collapse
Affiliation(s)
- Fangxu Shi
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Chaocheng Mang
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Haiwei Liu
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| | - Yanfeng Dong
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
- China
| |
Collapse
|
14
|
Zeng Y, Zhang X, Qin R, Liu X, Fang P, Zheng D, Tong Y, Lu X. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903675. [PMID: 31342572 DOI: 10.1002/adma.201903675] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Indexed: 05/21/2023]
Abstract
The current boom of safe and renewable energy storage systems is driving the recent renaissance of Zn-ion batteries. However, the notorious tip-induced dendrite growth on the Zn anode restricts their further application. Herein, the first demonstration of constructing a flexible 3D carbon nanotube (CNT) framework as a Zn plating/stripping scaffold is constituted to achieve a dendrite-free robust Zn anode. Compared with the pristine deposited Zn electrode, the as-fabricated Zn/CNT anode affords lower Zn nucleation overpotential and more homogeneously distributed electric field, thus being more favorable for highly reversible Zn plating/stripping with satisfactory Coulombic efficiency rather than the formation of Zn dendrites or other byproducts. As a consequence, a highly flexible symmetric cell based on the Zn/CNT anode presents appreciably low voltage hysteresis (27 mV) and superior cycling stability (200 h) with dendrite-free morphology at 2 mA cm-2 , accompanied by a high depth of discharge (DOD) of 28%. Such distinct performance overmatches most of recently reported Zn-based anodes. Additionally, this efficient rechargeability of the Zn/CNT anode also enables a substantially stable Zn//MnO2 battery with 88.7% capacity retention after 1000 cycles and remarkable mechanical flexibility.
Collapse
Affiliation(s)
- Yinxiang Zeng
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiyue Zhang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ruofei Qin
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoqing Liu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Pingping Fang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dezhou Zheng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Yexiang Tong
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, P. R. China
| |
Collapse
|
15
|
Thixotropic gel electrolyte containing poly(ethylene glycol) with high zinc ion concentration for the secondary aqueous Zn/LiMn2O4 battery. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|