1
|
Guan Y, Hu K, Su N, Zhang G, Han Y, An M. Review of NiS-Based Electrode Nanomaterials for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:979. [PMID: 36985879 PMCID: PMC10056300 DOI: 10.3390/nano13060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As a new type of energy storage device, supercapacitors have the advantages of high-power densities, high safety factors, and low maintenance costs, so they have attracted widespread attention among researchers. However, a major problem with supercapacitors is that their energy densities are not high enough, which limits their application. Therefore, it is crucial to expand the application scenarios of supercapacitors to increase their energy density as much as possible without diminishing their advantages. The classification and working principles of supercapacitors are introduced in this paper. The electrochemical properties of pure NiS materials, NiS composites with carbon materials, NiS composites with sulfide materials, and NiS composites with transition metal oxides for supercapacitors are summarized. This paper may assist in the design of new electrode materials for NiS-based supercapacitors.
Collapse
Affiliation(s)
- Yuhao Guan
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| | - Kexie Hu
- College of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Nan Su
- Engineering Science and Technology College of Equipment Engineering, Shanxi Vocational University of Engineering and Technology, Taiyuan 030619, China
| | - Gaohe Zhang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| | - Yujia Han
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
| | - Minrong An
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
2
|
NiS/Cu7S4 composites as high-performance supercapacitor electrodes. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
3
|
Agoro MA, Meyer EL. Roles of TOPO Coordinating Solvent on Prepared Nano-Flower/Star and Nano-Rods Nickel Sulphides for Solar Cells Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3409. [PMID: 36234536 PMCID: PMC9565322 DOI: 10.3390/nano12193409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The present study describes a cheap, safe, and stable chemical process for the formation of nickel sulphide (NiS) with the use of mixed and single molecular precursors. The production pathway is uncomplicated, energy-efficient, quick, and toxic-free, with large-scale commercialization potential. The obtained results show the effect of tri-N-octylphosphine oxide (TOPO) as a coordinating solvent on the reaction chemistry, size distributions, morphology, and optical properties of both precursors. Ni[N,N-benz-N-p-anisldtc] as NiSa, Ni[N,N-benzldtc] as NiSb, and Ni[N-p-anisldtc] as NiSc thermally decompose in a single step at 333-334 °C. The X-ray diffraction peaks for NiSa, NiSb, and NiSc matched well with the cubic NiS nanoparticles and corresponded to planes of (111), (220), and (311). The extrapolated linear part from the Tauc plots reveals band gap values of 3.12 eV, 2.95 eV, and 2.5 eV, which confirms the three samples as potential materials for solar cell applications. The transmission electron microscopy (TEM) technique affirmed the quantum dot size distribution at 19.69-28.19 nm for NISa, 9.08-16.63 nm for NISb, and 9.37-10.49 nm for NISc, respectively. NiSa and NiSc show a clearly distinguishable flower/star like morphology, while NiSb displays a compact nano-rod shape. To the best of the authors' knowledge, very few studies have been reported on the flower/star like and nano-rod shapes, but none with the dithiocarbamate molecular precursor for NiS nanoparticles.
Collapse
Affiliation(s)
- Mojeed A. Agoro
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Edson L. Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
4
|
Nickel sulfide and cobalt-containing carbon nanoparticles formed from ZIF-67@ZIF-8 as advanced electrode materials for high-performance asymmetric supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Peng L, Tuo Y, Lin Y, Jia C, Wang S, Zhou Y, Zhang J. Synthesis of P-doped NiS as an electrode material for supercapacitors with enhanced rate capability and cycling stability. NEW J CHEM 2022. [DOI: 10.1039/d2nj00107a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coral-like P-doped NiS nanocrystals were successfully synthesized by a two-step solvent-thermal method. The P-doped NiS electrode presented enhanced high capacitance, rate performance, and cycle life.
Collapse
Affiliation(s)
- Li'an Peng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yongxiao Tuo
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Lin
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Cuiping Jia
- College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shutao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
6
|
Jin J, Xiao T, Zhang YF, Zheng H, Wang H, Wang R, Gong Y, He B, Liu X, Zhou K. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. NANOSCALE 2021; 13:19740-19770. [PMID: 34821248 DOI: 10.1039/d1nr05799e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes have gained rapidly increasing attention owing to their two-dimensional (2D) layered structures and unique mechanical and physicochemical properties. However, MXenes have some intrinsic limitations (e.g., the restacking tendency of the 2D structure) that hinder their practical applications. Transition metal chalcogenide (TMC) materials such as SnS, NiS, MoS2, FeS2, and NiSe2 have attracted much interest for energy storage and conversion by virture of their earth-abundance, low costs, moderate overpotentials, and unique layered structures. Nonetheless, the intrinsic poor electronic conductivity and huge volume change of TMC materials during the alkali metal-ion intercalation/deintercalation process cause fast capacity fading and poor-rate and poor-cycling performances. Constructing heterostructures based on metallic conductive MXenes and highly electrochemically active TMCs is a promising and effective strategy to solve these problems and enhance the electrochemical performances. This review highlights and discusses the recent research development of MXenes and hierarchical MXene/TMC heterostructures, with a focus on the synthesis strategies, surface/heterointerface engineering, and potential applications for lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, supercapacitors, electrocatalysis, and photocatalysis. The critical challenges and perspectives of the future development of MXenes and hierarchical MXene/TMC heterostructures for electrochemical energy storage and conversion are forecasted.
Collapse
Affiliation(s)
- Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tuo Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - You-Fang Zhang
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Han Zheng
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Kun Zhou
- Environmental Process Modeling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
7
|
Hu Q, Zhang S, Zou X, Hao J, Bai Y, Yan L, Li W. Coordination agent-dominated phase control of nickel sulfide for high-performance hybrid supercapacitor. J Colloid Interface Sci 2021; 607:45-52. [PMID: 34492352 DOI: 10.1016/j.jcis.2021.08.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The property of an active material is not only influenced by its morphology and size, but also by its crystal phase. The present phase regulation of nickel sulfide is mainly achieved by controlling the participation of sulfur source in reaction. Thus, new perspectives direct at phase control need to be explored and supplemented. Herein, we proposed a novel coordination agent-dominated phase modulation strategy assisted by a hydrothermal process. It is found that increasing the amount of coordination agent can drove the phase transformation from the initial composite of β-NiS/α-NiS/Ni3S4 to β-NiS/α-NiS, and then to pure β-NiS. The mechanism of phase regulation has been proposed, and the general application of this method has been demonstrated. By employing coordination agent, the size of resulted products is reduced, and the morphology is optimized. As a result, all of the pure β-NiS electrodes indicate significantly enhanced specific capacity than the pristine β-NiS/α-NiS/Ni3S4 composite. Notably, the sample synthesized with 3 mmol of urea (S11) shows uniform morphology and smallest size, and it gives a highest specific capacity of 223.8 mAh g-1 at 1 A g-1, almost 1.5 times of the original sample. The fabricated S11//rGO device delivers a high energy density of 56.6 Wh·kg-1 at a power density of 407.5 W·kg-1, and keeps an impressive capacity retention of 84% after 20,000 cycles. This work put forwards a new prospect for controlling the phase and composition of nickel sulfide based on coordination chemistry.
Collapse
Affiliation(s)
- Qin Hu
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shengtao Zhang
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Jiangyu Hao
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Youcun Bai
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lijin Yan
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenpo Li
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Wang H, Wang J, Liang M, He Z, Li K, Song W, Tian S, Duan W, Zhao Y, Miao Z. Novel Dealloying-Fabricated NiS/NiO Nanoparticles with Superior Cycling Stability for Supercapacitors. ACS OMEGA 2021; 6:17999-18007. [PMID: 34308034 PMCID: PMC8296023 DOI: 10.1021/acsomega.1c01717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 05/21/2023]
Abstract
NiS/NiO nanoparticles are successfully fabricated through a simple dealloying method and an ion-exchange process. X-ray diffraction demonstrates the existence of NiO and NiS phases, and scanning electron microscopy and transmission electron microscopy imply the nanopore distribution nature and the nanoparticle morphology of the produced material. The electrochemical behaviors are studied by cyclic voltammetry and galvanostatic charge-discharge measurements. The NiS/NiO electrode shows an enhanced specific capacitance of 1260 F g-1 at a current density of 0.5 A g-1. The NiS/NiO//AC device provides a maximum energy density of 17.42 W h kg-1, a high power density of 4000 W kg-1, and a satisfactory cycling performance of 93% capacitance retention after 30,000 cycles.
Collapse
Affiliation(s)
| | | | | | - Zemin He
- Key Laboratory of Organic Polymer Photoelectric
Materials, School of Sciences, Xi’an Key Laboratory of Advanced
Photo-Electronics Materials and Energy Conversion Device, Xijing University, Xi’an 710123, China
| | - Kexuan Li
- Key Laboratory of Organic Polymer Photoelectric
Materials, School of Sciences, Xi’an Key Laboratory of Advanced
Photo-Electronics Materials and Energy Conversion Device, Xijing University, Xi’an 710123, China
| | - Wenqi Song
- Key Laboratory of Organic Polymer Photoelectric
Materials, School of Sciences, Xi’an Key Laboratory of Advanced
Photo-Electronics Materials and Energy Conversion Device, Xijing University, Xi’an 710123, China
| | - Shaopeng Tian
- Key Laboratory of Organic Polymer Photoelectric
Materials, School of Sciences, Xi’an Key Laboratory of Advanced
Photo-Electronics Materials and Energy Conversion Device, Xijing University, Xi’an 710123, China
| | - Wenyuan Duan
- Key Laboratory of Organic Polymer Photoelectric
Materials, School of Sciences, Xi’an Key Laboratory of Advanced
Photo-Electronics Materials and Energy Conversion Device, Xijing University, Xi’an 710123, China
| | - Yuzhen Zhao
- Key Laboratory of Organic Polymer Photoelectric
Materials, School of Sciences, Xi’an Key Laboratory of Advanced
Photo-Electronics Materials and Energy Conversion Device, Xijing University, Xi’an 710123, China
| | | |
Collapse
|
9
|
Controlled synthesis of a high-performance α-NiS/Ni3S4 hybrid by a binary synergy of sulfur sources for supercapacitor. J Colloid Interface Sci 2021; 581:56-65. [DOI: 10.1016/j.jcis.2020.07.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 01/13/2023]
|
10
|
Si Quantum Dots Assist Synthesized Microflower-Like Si/MoS2 Composites for Supercapacitors. CRYSTALS 2020. [DOI: 10.3390/cryst10090846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The microflower-like Si/MoS2 composites were fabricated using Si quantum dots (QDs) to assist a facile hydrothermal method. The electrochemical performance of Si/MoS2 composite in symmetric and asymmetric systems was studied. Electrochemical characterization revealed that the Si/MoS2 composite electrode in a three-electrode system has a high specific capacitance of 574.4 F·g−1 at 5 A·g−1. Furthermore, the Si/MoS2 composite electrode in a two-electrode system had the maximum energy density of 27.2 Wh·kg−1 when a power density of 749.1 W·kg−1 was achieved. Therefore, this investigation proves the Si/MoS2 composite microflower-like structure should be a promising candidate electrode material for supercapacitors.
Collapse
|
11
|
Zhao J, Hou S, Bai Y, Lian Y, Zhou Q, Ban C, Wang Z, Zhang H. Multilayer dodecahedrons Zn-Co sulfide for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Abbas SK, Mustafa GM, Saleem M, Sufyan M, Riaz S, Naseem S, Atiq S. Ethylene glycol assisted three-dimensional floral evolution of BiFeO 3-based nanostructures with effective magneto-electric response. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200642. [PMID: 32968524 PMCID: PMC7481687 DOI: 10.1098/rsos.200642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Controlled growth of nanostructures plays a vital role in tuning the physical and chemical properties of functional materials for advanced energy and memory storage devices. Herein, we synthesized hierarchical micro-sized flowers, built by the self-assembly of highly crystalline, two-dimensional nanoplates of Co- and Ni-doped BiFeO3, using a simple ethylene glycol-mediated solvothermal method. Pure BiFeO3 attained scattered one-dimensional nanorods-type morphology having diameter nearly 60 nm. Co-doping of Co and Ni at Fe-site in BiFeO3 does not destabilize the morphology; rather it generates three-dimensional floral patterns of self-assembled nanoplates. Unsaturated polarization loops obtained for BiFeO3 confirmed the leakage behaviour of these rhombohedrally distorted cubic perovskites. These loops were then used to determine the energy density of the BiFeO3 perovskites. Enhanced ferromagnetic behaviour with high coercivity and remanence was observed for these nanoplates. A detailed discussion about the origin of ferromagnetic behaviour based on Goodenough-Kanamori's rule is also a part of this paper. Impedance spectroscopy revealed a true Warburg capacitive behaviour of the synthesized nanoplates. High magneto-electric (ME) coefficient of 27 mV cm-1 Oe-1 at a bias field of -0.2 Oe was observed which confirmed the existence of ME coupling in these nanoplates.
Collapse
Affiliation(s)
- Syed Kumail Abbas
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| | - Ghulam M. Mustafa
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| | - Murtaza Saleem
- Department of Physics, School of Science and Engineering (SSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Muhammad Sufyan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China 510640
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| | - Shahid Atiq
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| |
Collapse
|
13
|
NiCo2S4 nanoparticles grown on reduced graphene oxides for high-performance asymmetric supercapacitors. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Hu Q, Li W, Xiang B, Zou X, Hao J, Deng M, Wu Q, Wang Y. Sulfur source-inspired synthesis of β-NiS with high specific capacity and tunable morphologies for hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Qu G, Li C, Hou P, Zhao G, Wang X, Zhang X, Xu X. Hierarchically hollow structured NiCo 2S 4@NiS for high-performance flexible hybrid supercapacitors. NANOSCALE 2020; 12:4686-4694. [PMID: 32048681 DOI: 10.1039/c9nr09991c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hierarchical nanostructures with outstanding electrochemical properties and mechanical stability are ideal for constructing flexible hybrid supercapacitors. Herein, hierarchically hollow NiCo2S4@NiS nanostructures were designed and synthesized by sulfurizing the hierarchical NiCo double hydroxides (DHs) coated with nickel hydroxide nanostructures on carbon fabrics (NiCo-DHs@Ni(OH)2/CF), which trigger excellent electrochemical performances. The NiCo2S4@NiS/CF exhibits a high specific capacity of 1314.0 C g-1 at a current density of 1 A g-1, and maintains the rate performance at about 79.2% of the initial capacity at 30 A g-1. The hybrid supercapacitors of NiCo2S4@NiS//AC display a high energy density of 62.4 W h kg-1 at a power density of 800 W kg-1 with a remarkable cycling stability (96.2% of initial capacitance after 5000 cycles) and robust mechanical flexibility (no obvious decay of specific capacitance during various deformations). Consequently, NiCo2S4@NiS electrodes are expected to be a promising candidate for new smart energy storage devices with high security, stability and flexibility.
Collapse
Affiliation(s)
- Guangmeng Qu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Chuanlin Li
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Peiyu Hou
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Gang Zhao
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Xiao Wang
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| | - Xiaoli Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 450001 P.R. China
| | - Xijin Xu
- School of Physics and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, P. R. China.
| |
Collapse
|