1
|
Huang C, Wang F, Chen X, Li J, Shao M, Wei Z. Innovative strategies for designing and constructing efficient fuel cell electrocatalysts. Chem Commun (Camb) 2025; 61:2658-2683. [PMID: 39812130 DOI: 10.1039/d4cc05928j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising energy conversion devices due to their high efficiency and zero emission; however, two major challenges, high cost and short lifetime, have been hindering the commercialization of fuel cells. Achieving low-Pt or non-precious metal oxygen reduction reaction (ORR) electrocatalysts is one of the main research ideas in this field. In this review, the degradation mechanism of Pt-based catalysts is firstly explained and elucidated, and then five strategies are suggested for the reduction of Pt usage without loss of activity and durability: modulation of metal-support interactions, optimization of local ionomers and mass transport, modulation of composition, modulation of structure, and multi-site synergistic effects. For carbon-based non-precious metal catalysts, the problems and challenges faced by heteroatom/transition-metal doped carbon-based catalysts are discussed, and several strategies to improve the activity of heteroatom/transition-metal doped carbon catalysts are suggested. Particularly, an innovative quantum well catalyst structure reported quite recently is presented which may open up new prospects for the development of fuel cell technology. Finally, this review concludes with a brief conclusion and prospects for future development of low-Pt and non-precious metal fuel cell electrocatalysts.
Collapse
Affiliation(s)
- Chengming Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Xia Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China.
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Guan J, Dong D, Khan NA, Zheng Y. Emerging Pt-based intermetallic nanoparticles for the oxygen reduction reaction. Chem Commun (Camb) 2024. [PMID: 38264768 DOI: 10.1039/d3cc05611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The advancement of highly efficient and enduring platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR) is a critical determinant to enable broad utilization of clean energy conversion technologies. Pt-based intermetallic electrocatalysts offer durability and superior ORR activity over their traditional analogues due to their definite stoichiometry, ordered and extended structures, and favourable enthalpy of formation. With the advent in new synthetic methods, Pt-based intermetallic nanoparticles as a new class of advanced electrocatalysts have been studied extensively in recent years. This review discusses the preparation principles, representative preparation methods of Pt-based intermetallics and their applications in the ORR. Our review is focused on L10 Pt-based intermetallics which have gained tremendous interest recently due to their larger surface strain and enhanced M(3d)-Pt(5d) orbital coupling, particularly in the crystallographic c-axis direction. Additionally, we discuss future research directions to further improve the efficiency of Pt-based intermetallic electrocatalysts with the intention of stimulating increased research ventures in this domain.
Collapse
Affiliation(s)
- Jingyu Guan
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Duo Dong
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Niaz Ali Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
| |
Collapse
|
3
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Shi W, Park AH, Kwon YU. Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
6
|
Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts 2021. [DOI: 10.3390/catal11091050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although oxygen reduction reaction (ORR) catalysts have been extensively investigated and developed, there is a lack of clarity on catalysts that can balance high performance and low cost. Pt-based intermetallic nanocrystals are of special interest in the commercialization of proton exchange membrane fuel cells (PEMFCs) due to their excellent ORR activity and stability. This review summarizes the wide range of applications of Pt-based intermetallic nanocrystals in cathode catalysts for PEMFCs and their unique advantages in the field of ORR. Firstly, we introduce the fundamental understanding of Pt-based intermetallic nanocrystals, and highlight the difficulties and countermeasures in their synthesis. Then, the progress of theoretical and experimental studies related to the ORR activity and stability of Pt-based intermetallic nanocrystals in recent years are reviewed, especially the integrated strategies for enhancing the stability of ORR. Finally, the challenges faced by Pt-based intermetallic nanocrystals are summarized and future research directions are proposed. In addition, numerous design ideas of Pt-based intermetallic nanocrystals as ORR catalysts are summarized, aiming to promote further development of commercialization of PEMFC catalysts while fully understanding Pt-based intermetallic nanocrystals.
Collapse
|
7
|
Zhu B, Lu J, Sakaki S. Catalysis of core-shell nanoparticle M@Pt (M Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Peng L, Zhou L, Kang W, Li R, Qu K, Wang L, Li H. Electrospinning Synthesis of Carbon-Supported Pt 3Mn Intermetallic Nanocrystals and Electrocatalytic Performance towards Oxygen Reduction Reaction. NANOMATERIALS 2020; 10:nano10091893. [PMID: 32971762 PMCID: PMC7559926 DOI: 10.3390/nano10091893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
To realize the large-scale application of fuel cells, it is still a great challenge to improve the performance and reduce the cost of cathode catalysts towards oxygen reduction reaction (ORR). In this work, carbon-supported ordered Pt3Mn intermetallic catalysts were prepared by thermal annealing electrospun polyacrylonitrile nanofibers containing Platinum(II) acetylacetonate/ Manganese(III) acetylacetonate. Compared with its counterparts, the ordered Pt3Mn intermetallic obtained at 950 °C exhibits a more positive half-potential and higher kinetic current density during the ORR process. Benefiting from their defined stoichiometry and crystal structure, the Mn atoms in Pt3Mn intermetallic can modulate well the geometric and electronic structure of surface Pt atoms, endowing Pt3Mn catalyst with an enhanced ORR catalytic activity. Moreover, it also has a better catalytic stability and methanol tolerance than commercial Pt/C catalyst. Our study provides a new strategy to fabricate a highly active and durable Pt3Mn intermetallic electrocatalyst towards ORR.
Collapse
|
9
|
Wu T, Sun M, Huang B. Probing the Irregular Lattice Strain-Induced Electronic Structure Variations on Late Transition Metals for Boosting the Electrocatalyst Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002434. [PMID: 32815291 DOI: 10.1002/smll.202002434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Owing to the simplicity in practice and continuous fine-tuning ability toward the binding strengths of adsorbates, the strain effect is intensively explored, especially focused on the modulation of catalytic activity in transition metal (TM) based electrocatalysts. Recently, more and more abnormal cases have been found that cannot be explained by the conventional simplified models. In this work, the strain effects in five late TMs, Fe, Co, Ni, Pd, and Pt are studied in-depth regarding the facet engineering, the surface atom density, and the d-band center. Interestingly, the irregular response of Fe lattice to the applied strain is identified, indicating the untapped potential of achieving the phase change by precise strain modulation. For the complicated high-index facets, the surface atom density has become the pivotal factor in determining the surface stability and electroactivity, which identifies the potential of high entropy alloys (HEA) in electrocatalysis. The work supplies insightful understanding and significant references for future research in subtle modulation of electroactivity based on the precise facet engineering in the more complex facets and morphologies.
Collapse
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
10
|
Stel’mashuk TA, Alekseeva EV, Levin OV. Mixed Platinum–Nickel Catalysts of Oxygen Reduction. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519110144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Li S, Liu J, Yin Z, Ren P, Lin L, Gong Y, Yang C, Zheng X, Cao R, Yao S, Deng Y, Liu X, Gu L, Zhou W, Zhu J, Wen X, Xu B, Ma D. Impact of the Coordination Environment on Atomically Dispersed Pt Catalysts for Oxygen Reduction Reaction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04558] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030000, China
- Syncat@Beijing, Synfuels China Technology Company, Ltd, Beijing 101407, China
| | - Zhen Yin
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Pengju Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030000, China
- Syncat@Beijing, Synfuels China Technology Company, Ltd, Beijing 101407, China
| | - Lili Lin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Yue Gong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Ce Yang
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne 60439, United States
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Ruochen Cao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Siyu Yao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Yuchen Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Xi Liu
- Syncat@Beijing, Synfuels China Technology Company, Ltd, Beijing 101407, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wu Zhou
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030000, China
- Syncat@Beijing, Synfuels China Technology Company, Ltd, Beijing 101407, China
| | - Bingjun Xu
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
12
|
Fe-boosting Sn-based dual-shell nanostructures from new covalent porphyrin frameworks as efficient electrocatalysts for oxygen reduction and zinc-air batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
He Y, Wu YL, Zhu XX, Wang JN. Remarkable Improvement of the Catalytic Performance of PtFe Nanoparticles by Structural Ordering and Doping. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11527-11536. [PMID: 30821140 DOI: 10.1021/acsami.9b01810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To achieve fuel cell commercialization, the performance improvement and cost reduction of catalysts are still the main challenges. To enhance the catalytic activity and durability for oxygen reduction reaction (ORR), we prepare Au-PtFe particles entrapped in a porous carbon and then convert them to have a fine-grained and highly ordered intermetallic structure. The optimal Au-PtFe particles in catalyzing ORR exhibit initial specific and mass activities 9 times higher than the commercial catalyst of Pt/C. Such a large enhancement is much higher than most of the Pt-based ordered intermetallic catalysts reported in the literature. Accelerated durability testing induces little degradation of the catalytic activity to the ordered structure, particularly the Au-doped one, after potential cycling for many thousands of cycles under harsh electrochemical conditions involving an acidic medium and a high potential range of 0.66-1.3 V. This is in big contrast with the large degradation shown by most previous catalysts. The excellent activity and durability are attributed to synergistic effects of the fine-grained and ordered structure of the particles, the confining support of the porous carbon, and the homogeneous incorporation of a trace amount of Au. The new intermetallic catalyst of Au-PtFe/C represents a new strategy for performance enhancement and cost reduction and thus promotes practical applications of proton-exchange membrane fuel cells.
Collapse
Affiliation(s)
- Yang He
- Nanocarbon and Manufacturing Innovation Center, School of Mechanical and Power Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Yan Lin Wu
- Nanocarbon and Manufacturing Innovation Center, School of Mechanical and Power Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Xin Xing Zhu
- Nanocarbon and Manufacturing Innovation Center, School of Mechanical and Power Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Jian Nong Wang
- Nanocarbon and Manufacturing Innovation Center, School of Mechanical and Power Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| |
Collapse
|
14
|
Affiliation(s)
- Leonard Rößner
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|