1
|
Li H, Jiang L, Shao D, Wu C, Gao Y, Yang Z, Yang Z. Facile synthesis of Cu@Cu2O aerogel for an effective electrochemical hydrogen peroxide sensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Gold Spherical and Flake Assemblies Fabrication Through Calcination of Gold Nanoparticles Incorporated Poly(acrylonitrile) Nanofibers. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Lei L, Zhang Y, Jiang Y, Xiong L, Liu Y, Li CM. Oxygen‐vacancy‐enhanced Catalytic Activity of Au@Co
3
O
4
/CeO
2
Yolk‐shell Nanocomposite to Electrochemically Detect Hydrogen Peroxide. ELECTROANAL 2021. [DOI: 10.1002/elan.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lingli Lei
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Yuanyuan Zhang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Ying Jiang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Lulu Xiong
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Yingshuai Liu
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Chang Ming Li
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
- School of Material Science and Engineering Institute of Materials Science and Devices Suzhou University of Science and Technology Suzhou 215011 P. R. China
- Institute of Advanced Cross-field Science and College of Life Science Qingdao University Qingdao 200671 P. R. China
| |
Collapse
|
4
|
Laroussi A, Raouafi N, Mirsky VM. Electrocatalytic Sensor for Hydrogen Peroxide Based on Immobilized Benzoquinone. ELECTROANAL 2021. [DOI: 10.1002/elan.202100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arwa Laroussi
- University of Tunis El Manar Faculty of Science of Tunis Chemistry Department Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15) campus universitaire de Tunis El Manar 2092 Tunis El Manar Tunisia
- Department of Nanobiotechnology Institute of Biotechnology Brandenburg University of Technology Cottbus-Senftenberg 01968 Senftenberg Germany
| | - Noureddine Raouafi
- University of Tunis El Manar Faculty of Science of Tunis Chemistry Department Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15) campus universitaire de Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Vladimir M. Mirsky
- Department of Nanobiotechnology Institute of Biotechnology Brandenburg University of Technology Cottbus-Senftenberg 01968 Senftenberg Germany
| |
Collapse
|
5
|
Aldea A, Leote RJB, Matei E, Evanghelidis A, Enculescu I, Diculescu VC. Gold coated electrospun polymeric fibres as new electrode platform for glucose oxidase immobilization. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Biswas S, Chawda M, Thakur K, Gudi R, Bellare J. Physicochemical Variation in Nanogold-Based Ayurved Medicine Suvarna Bhasma Produced by Various Manufacturers Lead to Different In Vivo Bioaccumulation Profiles. J Evid Based Integr Med 2021; 26:2515690X211011064. [PMID: 33906452 PMCID: PMC8743929 DOI: 10.1177/2515690x211011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Suvarna Bhasma (SB) is a gold particle-based medicine that is used in Ayurved to treat tuberculosis, arthritis and nervous diseases. Traditionally, the Ayurved preparation processes of SB do exist, but they are all long, tedious and involve several steps. Due to this, there is a possibility of bypassing the necessary Ayurved processes or non-adherence to all steps or use of synthetic gold particles. Our aim is to characterize 5 commercial SB preparations from 5 different manufacturers. A comparative physicochemical, pharmacokinetic (PK) and bioaccumulation study was carried out on all the 5 SB preparations. The general appearance such as color and texture of these 5 samples were different from each other. The size, shape and gold concentration (from 32-98 wt%) varied among all the 5 SBs. The accumulation of ionic gold in zebrafish and gold concentration profiles in rat blood were found to be significantly different for all the 5 SBs. Non-compartmental PK model obtained from the concentration-time profile showed significant differences in various PK parameters such as peak concentration (Cmax), half-life (t1/2) and terminal elimination slope (λz) for all the 5 SB preparations. SB-B showed the highest Cmax (8.55 μg/L), whereas SB-D showed the lowest Cmax (4.66 μg/L). The dissolution of ionic gold from SBs in zebrafish tissue after the oral dose had a 5.5-fold difference between the highest and lowest ionic gold concentrations. All the 5 samples showed distinct physicochemical and biological properties. Based on characteristic microscopic morphology, it was found that 2 preparations among them were suspected of being manufactured by non-adherence to the mentioned Ayurved references.
Collapse
Affiliation(s)
- Snehasis Biswas
- Department of Chemical Engineering, 29491Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Mukesh Chawda
- 76813Shree Dhootapapeshwar Limited, Nanubhai Desai Road, Khetwadi, Mumbai, Maharashtra, India
| | - Kapil Thakur
- 76813Shree Dhootapapeshwar Limited, Nanubhai Desai Road, Khetwadi, Mumbai, Maharashtra, India
| | - Ramacharya Gudi
- 76813Shree Dhootapapeshwar Limited, Nanubhai Desai Road, Khetwadi, Mumbai, Maharashtra, India
| | - Jayesh Bellare
- Department of Chemical Engineering, 29491Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.,Wadhwani Research Centre for Bioengineering, 29491Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Sudhakara SM, Devendrachari MC, Kotresh HMN, Khan F. Phthalocyanine pendented polyaniline via amide linkage for an electrochemical sensing of H2O2. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Salek Maghsoudi A, Hassani S, Rezaei Akmal M, Ganjali MR, Mirnia K, Norouzi P, Abdollahi M. An Electrochemical Aptasensor Platform Based on Flower-Like Gold Microstructure-Modified Screen-Printed Carbon Electrode for Detection of Serpin A12 as a Type 2 Diabetes Biomarker. Int J Nanomedicine 2020; 15:2219-2230. [PMID: 32280216 PMCID: PMC7127862 DOI: 10.2147/ijn.s244315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose In the present study, a highly sensitive and simple electrochemical (EC) aptasensor for the detection of serpin A12 as a novel biomarker of diabetes was developed on a platform where flower-like gold microstructures (FLGMs) are electrodeposited onto a disposable screen-printed carbon electrode. Meanwhile, serpin A12-specific thiolated aptamer was covalently immobilized on the FLGMs. Methods The electrochemical activity of a fabricated aptasensor under various conditions were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Aptamer concentration, deposition time, self-assembly time, and incubation time were optimized for assay of serpin A12. The differential pulse voltammetry (DPV) was implemented for quantitative detection of serpin A12 in K3 [Fe (CN) 6]/K4 [Fe (CN) 6] solution (redox probe). Results The label-free aptasensor revealed a linear range of serpin A12 concentration (0.039–10 ng/mL), detection limit of 0.020 ng/mL (S/N=3), and 0.031 ng/mL in solution buffer and plasma, respectively. Conclusion The results indicate that this aptasensor has a high sensitivity, selectivity, stability, and acceptable reproducibility for detection of serpin A12 in diabetic patients.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zheng S, Li M, Li H, Li C, Li P, Qian L, Yang B. Sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on the cooperation of a gold-vertical graphene electrode and gold@silica-methylene blue. J Mater Chem B 2019; 8:298-307. [PMID: 31808501 DOI: 10.1039/c9tb01803d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, a sandwich-type electrochemical (EC) immunosensor was proposed to detect a carcinoembryonic antigen (CEA) based on Au-graphene and Au@SiO2-methylene blue (MB). The Au nanoparticles (NPs)-vertical graphene (VG) electrode efficiently amplifies the response signal by immobilizing a large amount of the coating antibody (Ab) and is characterized by excellent electrocatalytic activity. The MB nanodot-loaded Au@SiO2 carriers with core-shell nanostructure and detection Ab were used to construct the Ab-Au@SiO2-MB label, which improved the sensitivity due to the high EC signal of MB nanodots and the high labeling effect between the detection Ab and MB probe. A novel double-Ab sandwich strategy was developed to further improve the sensitivity and stability based on the same specificity of the coating and detection Abs for the recognition of CEA. Under optimal conditions, the developed EC sensor exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, with an ultralow detection limit of 0.8 fg mL-1 (S/N = 3). The feasibility in the clinical application of the EC sensor was verified by the in vitro detection of CEA in human serum.
Collapse
Affiliation(s)
- Siyu Zheng
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China. and Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Penghai Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Lirong Qian
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Baohe Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
10
|
Antuch M, Matos‐Peralta Y, Llanes D, Echevarría F, Rodríguez‐Hernández J, Marin MH, Díaz‐García AM, Reguera L. Bimetallic Co
2+
and Mn
2+
Hexacyanoferrate for Hydrogen Peroxide Electrooxidation and Its Application in a Highly Sensitive Cholesterol Biosensor. ChemElectroChem 2019. [DOI: 10.1002/celc.201900190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manuel Antuch
- Universidad de la HabanaFacultad de Química Zapata y G 10400 La Habana Cuba
- Current address: Équipe de Recherche et Innovation en Électrochimie pour l'Énergie (ERIEE)Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182Université Paris-SudUniversité Paris Saclay 91400 Orsay France
| | | | - Dayma Llanes
- Universidad de la HabanaFacultad de Química Zapata y G 10400 La Habana Cuba
| | - Frank Echevarría
- Instituto Politécnico NacionalCentro de Investigación en Ciencia Aplicada y Tecnología Avanzada, U. Legaria Ciudad México México
| | | | - Milenen Hernández Marin
- Departmento de BiosensoresCentro de Inmunoensayo Calle 134 y Ave. 25, Reparto Cubanacán Municipio Playa CP 11600 La Habana Cuba
| | | | - Leslie Reguera
- Universidad de la HabanaFacultad de Química Zapata y G 10400 La Habana Cuba
- Universidad de La HabanaInstituto de Ciencia y Tecnología de Materiales La Habana Cuba
| |
Collapse
|