1
|
Zhang Y, Zhou S, Sun K. Cu 2ZnSnS 4 (CZTS) for Photoelectrochemical CO 2 Reduction: Efficiency, Selectivity, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2762. [PMID: 37887913 PMCID: PMC10609760 DOI: 10.3390/nano13202762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Massive emissions of carbon dioxide (CO2) have caused environmental issues like global warming, which needs to be addressed. Researchers have developed numerous methods to reduce CO2 emissions. Among these, photoelectrochemical (PEC) CO2 reduction is a promising method for mitigating CO2 emissions. Recently, Cu2ZnSnS4 (CZTS) has been recognized as good photocathode candidate in PEC systems for CO2 reduction due to its earth abundance and non-toxicity, as well as its favourable optical/electrical properties. The performance of PEC CO2 reduction can be evaluated based on its efficiency, selectivity, and stability, which are significantly influenced by the photocathode materials. As a result, researchers have applied various strategies to improve the performance of CZTS photocathodes, including band structure engineering and surface catalytic site engineering. This review provides an overview of advanced methods to enhance the PEC systems for CO2 reduction, focusing on CZTS.
Collapse
Affiliation(s)
- Yijia Zhang
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Shujie Zhou
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kaiwen Sun
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| |
Collapse
|
2
|
Wei Y, Duan R, Zhang Q, Cao Y, Wang J, Wang B, Wan W, Liu C, Chen J, Gao H, Jing H. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(23)64395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Tang B, Xiao FX. An Overview of Solar-Driven Photoelectrochemical CO 2 Conversion to Chemical Fuels. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Tang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People’s Republic of China
| |
Collapse
|
4
|
He J, Wang X, Jin S, Liu ZQ, Zhu M. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63936-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Nandal N, Jain SL. A review on progress and perspective of molecular catalysis in photoelectrochemical reduction of CO2. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214271] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Fernandez-Ibanez P, McMichael S, Rioja Cabanillas A, Alkharabsheh S, Tolosana Moranchel A, Byrne JA. New trends on photoelectrocatalysis (PEC): nanomaterials, wastewater treatment and hydrogen generation. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Lim D, Min K, Hwang M, Ham HC, Kim GJ, Baeck SH. Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Jia M, Xiong W, Yang Z, Cao J, Zhang Y, Xiang Y, Xu H, Song P, Xu Z. Metal-organic frameworks and their derivatives-modified photoelectrodes for photoelectrochemical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Li Y, Shi J, Wu L, Zhang J, Lu J. Organic Electron Donor‐Acceptor Co‐intercalated NiMn‐LDHs – Photocatalysts with Enhanced Separation of Charge Carriers for Photocatalytic Reduction of CO
2. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuexian Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Jingjing Shi
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Lei Wu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Junzheng Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology P. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
| |
Collapse
|
10
|
Jelmy EJ, Thomas N, Mathew DT, Louis J, Padmanabhan NT, Kumaravel V, John H, Pillai SC. Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00214g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
2D material based strategies for adsorption and conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- E. J. Jelmy
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Nishanth Thomas
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Dhanu Treasa Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Jesna Louis
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala, India
| | - Nisha T. Padmanabhan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
| | - Vignesh Kumaravel
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Honey John
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kerala, India
| | - Suresh C. Pillai
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|
11
|
De Alvarenga G, Hryniewicz BM, Jasper I, Silva RJ, Klobukoski V, Costa FS, Cervantes TN, Amaral CD, Schneider JT, Bach-Toledo L, Peralta-Zamora P, Valerio TL, Soares F, Silva BJ, Vidotti M. Recent trends of micro and nanostructured conducting polymers in health and environmental applications. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Photoelectrocatalytic CO2 reduction to ethanol via graphite-supported and functionalized TiO2 nanowires photocathode. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kumar A, Khan M, He J, Lo IMC. Recent developments and challenges in practical application of visible-light-driven TiO 2-based heterojunctions for PPCP degradation: A critical review. WATER RESEARCH 2020; 170:115356. [PMID: 31816569 DOI: 10.1016/j.watres.2019.115356] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The ability of the TiO2-based photocatalysis process to mineralize organic pollutants has attracted attention worldwide for the degradation of recalcitrant pharmaceuticals and personal care products (PPCPs). Nevertheless, (1) the limited exploitation of the solar spectrum, i.e., activation under UV light (only 2-3% of solar spectrum), and (2) the high recombination rate of photo-generated charge carriers, i.e., electrons and holes, have limited its application which can, however, be improved by developing a TiO2-based heterojunction. The objective of this critical review paper is to discuss the recent developments (2009-2019) in visible-light-driven (VLD) TiO2-based heterojunctions for PPCP degradation and their degradation mechanisms. Compared to the conventional heterojunctions, Schottky and Z-scheme heterojunctions, which are non-conventional heterojunctions, are found to be more effective for PPCP degradation due to their more efficient separation of charge carriers and the occurrence of redox reactions at a relatively higher redox potential. Furthermore, the enhancement strategies for the development of a VLD TiO2-based heterojunction are also explored which can be achieved by selecting the (1) highly photocatalytically active {001} facet of anatase TiO2, (2) synthesis methods governing the structural changes at the junction interface, and (3) heterojunction components which can efficiently generate the powerful •OH radicals. The challenges in practical applications are also discussed which include factors, viz., cost reduction, recycling, stability, byproducts analysis, evaluation of the environmental effectiveness, and reactor design and scale-up of the VLD TiO2-based heterojunctions. Accordingly, the prospects of VLD TiO2-based heterojunctions for PPCP degradation in real environmental applications are discussed.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Musharib Khan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Juhua He
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
14
|
Zhang L, Cao H, Lu Y, Zhang H, Hou G, Tang Y, Zheng G. Effective combination of CuFeO 2 with high temperature resistant Nb-doped TiO 2 nanotube arrays for CO 2 photoelectric reduction. J Colloid Interface Sci 2020; 568:198-206. [PMID: 32088450 DOI: 10.1016/j.jcis.2020.01.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
Herein, we report a simple approach to synthesize CuFeO2/TNNTs photocathodes composed of high-temperature resistance n-type Nb-doped TiO2 nanotube arrays (TNNTs) and p-type CuFeO2 for CO2 reduction. TNNTs were prepared by anodic oxidation on TiNb alloy sheets and CuFeO2/TNNTs were then prepared by coating precursor liquid onto TNNTs followed by heat treatment in argon atmosphere. The microstructures of CuFeO2/TNNTs and TNNTs before and after heat treatment were investigated by SEM and TEM. The phase compositions of CuFeO2/TNNTs were studied by XRD and XPS, and the light absorption performance were tested by UV-vis diffuse reflectance spectrum. Results show that TNNTs exhibit a regular nanotube arrays structure and this structure is well remained after the calcination at 650 °C. In addition, TNNTs show similar semiconductor properties to n-type TiO2, which enables them to be integrated with p-type CuFeO2 to obtain composite photocathodes with a p-n junction. The synthesized CuFeO2/TNNTs photocathode is well crystallized because no other crystalline iron or copper compounds are included in the prepared photocathode. Furthermore, the photocathode shows high light absorption and fast carrier transport due to the appropriate band gap and p-n junction. As a result, high photoelectrocatalytic CO2 reduction performance with high selectivity to ethanol is obtained on this photocathode.
Collapse
Affiliation(s)
- Liqiang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huazhen Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yueheng Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huibin Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guangya Hou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiping Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoqu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Zhang X, Gao Y, Nengzi LC, Li B, Gou J, Cheng X. Synthesis of SnS/TiO2 nano-tube arrays photoelectrode and its high photoelectrocatalytic performance for elimination of 2,4,6-trichlorophenol. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
|
17
|
Wu X, Lan D, Zhang R, Pang F, Ge J. Fabrication of Opaline ZnO Photonic Crystal Film and Its Slow-Photon Effect on Photoreduction of Carbon Dioxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:194-202. [PMID: 30520643 DOI: 10.1021/acs.langmuir.8b03327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monodisperse ZnO particles with adjustable size have been produced on a large scale by two-step seeding-growth polyol reactions. Through spin coating of supersaturated ZnO/diethylene glycol solution and evaporation of solvent, opaline ZnO photonic crystal (PC) film with good crystallinity and uniform photonic structures can be prepared from these ZnO particles. Compared with a disorderly stacked ZnO film, the ZnO PC film shows a higher activity in photocatalytic reduction of CO2 due to the generated slow photons at the edge of the photonic band gap and their promotion to the light absorption. When the electronic band gap of ZnO matches the red edge of the photonic band gap of ZnO PC, the enhancement factor of photocatalytic activity represented by CO evolution can be maximized to 2.64-fold in the current experiment. Compared to the traditional inverse opal photocatalysts, the opaline ZnO photocatalysts are prepared by simplified and scalable procedures, and they still possess the same enhancement in activity compared to ZnO without the photonic structure, which might be broadly used in solar energy utilization, environment protection, and many other green chemical processes in the future.
Collapse
Affiliation(s)
- Xiaojie Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Dengpeng Lan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Ruifang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Fei Pang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Jianping Ge
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| |
Collapse
|
18
|
Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|