1
|
Liu J, Wang M, Guo C, Tao Z, Wang M, He L, Liu B, Zhang Z. Defective porphyrin-based metal-organic framework nanosheets derived from V 2CT x MXene as a robust bioplatform for impedimetric aptasensing 17β-estradiol. Food Chem 2023; 416:135839. [PMID: 36893636 DOI: 10.1016/j.foodchem.2023.135839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
An electrochemical aptasensor was prepared for the efficient, sensitive, and selective detection of 17β-estradiol. The sensor was based on a defective two-dimensional porphyrin-based metal-organic framework derived from V2CTx MXene. The resulting metal-organic framework nanosheets benefited from the advantages of V2CTx MXene nanosheets and porphyrin-based metal-organic framework, two-dimensional porphyrin-based metal-organic framework nanosheets demonstrated amplified electrochemical response and enhanced aptamer-immobilization ability compared with V2CTx MXene nanosheets. The sensor's detection limit was ultralow at 0.81 fg mL-1 (2.97 fM), and the 17β-estradiol concentration range was wide, thereby outperforming most reported aptasensors. The high selectivity, superior stability and reproducibility, and excellent regeneration performance of the constructed aptasensor indicated its remarkable potential application for 17β-estradiol determination in diverse real samples. This aptasensing strategy can be used to analyze other targets by replacing the corresponding aptamer.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Zhang M, Wu Z, Yang Y, Ye J, Han S, Li Y. Fabrication of molecularly-imprinted gold nanoparticle-embedded Fe-MOFs for highly selective SERS detection of 17β-estradiol in milk. Analyst 2023; 148:2472-2481. [PMID: 37183446 DOI: 10.1039/d3an00343d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
17β-Estradiol (17β-E2) could accumulate in humans through milk, thus causing diseases by interfering with the function of the endocrine system. However, its detection at a trace level in milk is still a challenge because of matrix interferences. In this work, a core-shell structured polydopamine molecular-imprinted gold nanoparticles (AuNP@MIP-PDA) were embedded into Fe metal-organic framework materials to form a well-defined hexagonal microspindle structure of AuNP@MIP-PDA@MIL-101(Fe). AuNP@MIP-PDA were successfully encapsulated within the MIL-101 crystals through the hydrophobic interaction between organic ligands and the aromatic groups of PDA, the chelating power of catechol groups, as well as the introduction of acetic acid. Combined with the SERS activity of AuNPs, the specific recognition sites from MIPs, and the adsorption and enrichment capability of MIL-101, the fabricated nanohybrids could be designed as highly selective SERS sensors for the detection. By effectively preventing the macromolecule adsorption and the preconcentration of 17β-E2 near the SERS-active surface, the SERS sensor could be directly applied in the selective detection of 17β-E2 in milk without tedious pretreatment. The method demonstrated an outstanding detection limit of 1.95 × 10-16 mol L-1, without the interference mainly originating from the two analogues, estrone and estriol. These promising results foresee the potential application of this novel MIP-based SERS sensor in food and environmental sensing.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Zhouya Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunhan Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Biyana Regasa M, Nyokong T. Synergistic recognition and electrochemical sensing of 17β-Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver nanoparticles composite films. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Regasa MB, Nyokong T. Design and fabrication of electrochemical sensor based on molecularly imprinted polymer loaded onto silver nanoparticles for the detection of 17-β-Estradiol. J Mol Recognit 2022; 35:e2978. [PMID: 35633278 DOI: 10.1002/jmr.2978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole (AgNP) for the selective and sensitive detection of endocrine disrupting 17β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed MIP composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and x-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 pM and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87-98.36% and acceptable reusability and storage stability performances. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melkamu Biyana Regasa
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa.,Chemistry Department, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia
| | - Tebello Nyokong
- Chemistry Department, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
5
|
Xie P, Liu Z, Huang S, Chen J, Yan Y, Li N, Zhang M, Jin M, Shui L. A sensitive electrochemical sensor based on wrinkled mesoporous carbon nanomaterials for rapid and reliable assay of 17β-estradiol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Application of new aptasensor modified with nanocomposite for selective estradiol valerate determination in pharmaceutical and real biological samples. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02773-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Lu Y, Zhao X, Tian Y, Guo Q, Li C, Nie G. An electrochemiluminescence aptasensor for the ultrasensitive detection of aflatoxin B1 based on gold nanorods/graphene quantum dots-modified poly(indole-6-carboxylic acid)/flower-gold nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104959] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Yao X, Gao J, Yan K, Chen Y, Zhang J. Ratiometric Self-Powered Sensor for 17β-Estradiol Detection Based on a Dual-Channel Photocatalytic Fuel Cell. Anal Chem 2020; 92:8026-8030. [DOI: 10.1021/acs.analchem.0c01543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoling Yao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jie Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yingxu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
9
|
Zhou J, Sheth S, Zhou H, Song Q. Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering. Talanta 2020; 211:120745. [DOI: 10.1016/j.talanta.2020.120745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 01/27/2023]
|
10
|
Kuralay F, Dükar N. Polypyrrole‐Based Nanohybrid Electrodes: Their Preparation and Potential Use for DNA Recognition and Paclitaxel Quantification. ChemistrySelect 2020. [DOI: 10.1002/slct.201904253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Filiz Kuralay
- Department of ChemistryFaculty of ScienceHacettepe University 06800 Ankara Turkey
| | - Nilgün Dükar
- Ordu UniversityFaculty of Arts and SciencesDepartment of Chemistry 52200 Ordu Turkey
| |
Collapse
|
11
|
Qin D, Jiang X, Mo G, Feng J, Deng B. Boron nitride quantum dots as electrochemiluminescence coreactants of rGO@Au@Ru–SiO2 for label-free detection of AFP in human serum. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Lee MH, Thomas JL, Su ZL, Zhang ZX, Lin CY, Huang YS, Yang CH, Lin HY. Doping of transition metal dichalcogenides in molecularly imprinted conductive polymers for the ultrasensitive determination of 17β-estradiol in eel serum. Biosens Bioelectron 2019; 150:111901. [PMID: 31767344 DOI: 10.1016/j.bios.2019.111901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been developed to replace antibodies for the recognition of target molecules (such as antigens), and have been integrated into electrochemical sensing approaches by polymerization onto an electrode. Electrochemical sensing is inexpensive and flexible, and has demonstrated utility in point-of-care devices. In this work, several 2D (conductive) materials were employed to improve the performance of MIP sensors. Screen-printed electrodes were coated by the electropolymerization of aniline and metanilic acid, commingled with target molecules and various 2D materials. Tungsten disulfide (WS2) with an average particle size of 2 μm was found to increase the sensitivity of detection of molecularly imprinted conductive polymer-coated electrodes to 17β-estradiol. As estradiol concentrations are important to eel aquaculture, we screened eel serum samples to determine their 17β-estradiol concentrations, which were found to be in the range 28.2 ± 3.6 to 73.0 ± 11.6 pg/mL after dilution. These results were in agreement with measurements using commercial immunoanalysis.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zi-Lin Su
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Zheng-Xiang Zhang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Chu-Yun Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Yung-Sen Huang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
13
|
Wathudura PD, Kavinda T, Gunatilake SR. Determination of steroidal estrogens in food matrices: current status and future perspectives. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Rico-Yuste A, Carrasco S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers (Basel) 2019; 11:E1173. [PMID: 31336762 PMCID: PMC6681127 DOI: 10.3390/polym11071173] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
We report on the development of new optical sensors using molecularly imprinted polymers (MIPs) combined with different materials and explore the novel strategies followed in order to overcome some of the limitations found during the last decade in terms of performance. This review pretends to offer a general overview, mainly focused on the last 3 years, on how the new fabrication procedures enable the synthesis of hybrid materials enhancing not only the recognition ability of the polymer but the optical signal. Introduction describes MIPs as biomimetic recognition elements, their properties and applications, emphasizing on each step of the fabrication/recognition procedure. The state of the art is presented and the change in the publication trend between electrochemical and optical sensor devices is thoroughly discussed according to the new fabrication and micro/nano-structuring techniques paving the way for a new generation of MIP-based optical sensors. We want to offer the reader a different perspective based on the materials science in contrast to other overviews. Different substrates for anchoring MIPs are considered and distributed in different sections according to the dimensionality and the nature of the composite, highlighting the synergetic effect obtained as a result of merging both materials to achieve the final goal.
Collapse
Affiliation(s)
| | - Sergio Carrasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
Dakshayini B, Reddy KR, Mishra A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu AV. Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.061] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|