Tavakkoli H, Akhond M, Ghorbankhani GA, Absalan G. Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection.
Mikrochim Acta 2020;
187:105. [PMID:
31916024 DOI:
10.1007/s00604-019-4064-7]
[Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
Abstract
A nanobiocomposite was prepared from multiwalled carbon nanotubes and zein nanoparticles. It was dispersed in water/ethanol and drop cast onto a glassy carbon electrode. The modified electrode can be used for electroreduction of H2O2 (typically at a working potential of -0.71 V vs. Ag/AgCl). The electrochemical properties of the electrode were investigated by cyclic voltammetry, linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Response to H2O2 is linear in the 0.049 to 22 μM concentration range, and the detection limit is 35 nM at pH 7.0. The sensor was successfully utilized for the measurement of H2O2 in a synthetic urine sample, and for monitoring the release of H2O2 from human dermal fibroblasts and human hepatocellular carcinoma cells. Graphical abstractSchematic representation of a novel metal- and enzyme-free electrochemical nanosensor. A glassy carbon electrode was modified with a nanocomposite prepared from multiwalled carbon nanotubes and zein nanoparticles. It was applied to the identification of liver cancer cells via sensing of H2O2 and has a very low detection limit.
Collapse