1
|
Webster CF, Kim WJ, Reguera G, Friesen ML, Beyenal H. Review: can bioelectrochemical sensors be used to monitor soil microbiome activity and fertility? Curr Opin Biotechnol 2024; 90:103222. [PMID: 39504624 DOI: 10.1016/j.copbio.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
This review presents current knowledge on applying bioelectrochemical sensors to monitor soil fertility through microbial activity and discusses future perspectives. Soil microbial activity is considered an indicator of soil fertility due to the interconnected relationship between soil nutrient composition, microbiome, and plant productivity. Similarities between soils and bioelectrochemical reactors provide the foundation for the design of bioelectrochemical sensors driven by microorganisms enriched as electrochemically active biofilms on polarized electrodes. The biofilm can exchange electrons with electrodes and metabolites with the nearby microbiome to generate electrochemical signals that inform of microbiome functions and nutrient bioavailability. Such mechanisms can be harnessed as a bioelectrochemical sensor for proxy monitoring of soil fertility to address the need for real-time monitoring of soils.
Collapse
Affiliation(s)
- Christina F Webster
- School of Chemical Engineering and Bioengineering, Voiland College of Engineering and Architecture Washington State University, Pullman, WA, United States
| | - Won-Jun Kim
- School of Chemical Engineering and Bioengineering, Voiland College of Engineering and Architecture Washington State University, Pullman, WA, United States
| | - Gemma Reguera
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Haluk Beyenal
- School of Chemical Engineering and Bioengineering, Voiland College of Engineering and Architecture Washington State University, Pullman, WA, United States.
| |
Collapse
|
2
|
Gao SC, Fan XX, Zhang Z, Li RT, Zhang Y, Gao TP, Liu Y. A dual-function mixed-culture biofilm for sulfadiazine removal and electricity production using bio-electrochemical system. Biosens Bioelectron 2024; 263:116552. [PMID: 39038400 DOI: 10.1016/j.bios.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 μA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.
Collapse
Affiliation(s)
- Sheng-Chao Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Xin-Xin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Rui-Tao Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Yue Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Tian-Peng Gao
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, 730070, China; College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
3
|
Jayathilake C, Piyumika G, Nazeer Z, Wijayawardene N, Rajakaruna S, Kumla J, Fernando E. Recent progress in the characterization and application of exo-electrogenic microorganisms. Antonie Van Leeuwenhoek 2024; 117:10. [PMID: 38170279 DOI: 10.1007/s10482-023-01916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Exo-electrogenic microorganisms are characterized by their special metabolic capability of transferring metabolic electrons out of their cell, into insoluble external electron acceptors such as iron or manganese oxides and electrodes, or vice versa take up electron from electrodes. Their conventional application is primarily limited to microbial fuel cells for electrical power generation and microbial electrolysis cells for the production of value-added products such as biohydrogen, biomethane and hydrogen peroxide. The utility of exo-electrogenic organisms has expanded into many other applications in recent times. Such examples include microbial desalination cells, microbial electro-synthesis cells producing value-added chemicals such as bio-butanol and their applications in other carbon sequestration technologies. Additionally, electrochemically-active organisms are now beginning to be employed in biosensor applications for environmental monitoring. Additionally, the utility of biocathodes in bio-electrochemical systems is also a novel application in catalyzing the cathodic oxygen reduction reaction to enhance their electrochemical performance. Advances have also been made in the expansion and use of other organisms such as the usage of photosynthetic microorganisms for the fabrication of self-sustained bio-electrochemical systems. This review attempts to provide a comprehensive picture of the state-of the art of exo-electrogenic organisms and their novel utility in bioelectrochemical systems.
Collapse
Affiliation(s)
| | - Gayani Piyumika
- Department of Biology, Rajarata University, Mihintale, 50300, Sri Lanka
| | - Zumaira Nazeer
- Department of Biology, Rajarata University, Mihintale, 50300, Sri Lanka
| | - Nalin Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | | | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Eustace Fernando
- Department of Biology, Rajarata University, Mihintale, 50300, Sri Lanka.
- School of Engineering and Science, Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Charles V. Schaefer, Hoboken, NJ, 07030, USA.
| |
Collapse
|
4
|
Mohamed A, Sanchez E, Sanchez N, Friesen ML, Beyenal H. Electrochemically Active Biofilms as an Indicator of Soil Health. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2021; 168:087511. [PMID: 36311278 PMCID: PMC9608337 DOI: 10.1149/1945-7111/ac1e56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soil health is a complex phenomenon that reflects the ability of soil to support both plant growth and other ecosystem functions. To our knowledge, research on extracellular electron transfer processes in soil environments is limited and could provide novel knowledge and new ways of monitoring soil health. Electrochemical activities in the soil can be studied by inserting inert electrodes. Once the electrode is polarized to a favorable potential, nearby microorganisms attach to the electrodes and grow as biofilms. Biofilms are a major part of the soil and play critical roles in microbial activity and community dynamics. Our work aims to investigate the electrochemical behavior of healthy and unhealthy soils using chronoamperometry and cyclic voltammetry. We developed a bioelectrochemical soil reactor for electrochemical measurements using healthy and unhealthy soils taken from the Cook Agronomy Farm Long-Term Agroecological Research site; the soils showed similar physical and chemical characteristics, but there was higher plant growth where the healthy soil was taken. Using carbon cloth electrodes installed in these soil reactors, we explored the electrochemical signals in these two soils. First, we measured redox variations by depth and found that reducing conditions were prevalent in healthy soils. Current measurements showed distinct differences between healthy and unhealthy soils. Scanning electron microscopy images showed the presence of microbes attached to the electrode for healthy soil but not for unhealthy soil. Glucose addition stimulated current in both soil types and caused differences in cyclic voltammograms between the two soil types to converge. Our work demonstrates that we can use current as a proxy for microbial metabolic activity to distinguish healthy and unhealthy soil.
Collapse
Affiliation(s)
- Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Eduardo Sanchez
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Natalie Sanchez
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Maren L. Friesen
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
5
|
Yee MO, Deutzmann J, Spormann A, Rotaru AE. Cultivating electroactive microbes-from field to bench. NANOTECHNOLOGY 2020; 31:174003. [PMID: 31931483 DOI: 10.1088/1361-6528/ab6ab5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electromicrobiology is an emerging field investigating and exploiting the interaction of microorganisms with insoluble electron donors or acceptors. Some of the most recently categorized electroactive microorganisms became of interest to sustainable bioengineering practices. However, laboratories worldwide typically maintain electroactive microorganisms on soluble substrates, which often leads to a decrease or loss of the ability to effectively exchange electrons with solid electrode surfaces. In order to develop future sustainable technologies, we cannot rely solely on existing lab-isolates. Therefore, we must develop isolation strategies for environmental strains with electroactive properties superior to strains in culture collections. In this article, we provide an overview of the studies that isolated or enriched electroactive microorganisms from the environment using an anode as the sole electron acceptor (electricity-generating microorganisms) or a cathode as the sole electron donor (electricity-consuming microorganisms). Next, we recommend a selective strategy for the isolation of electroactive microorganisms. Furthermore, we provide a practical guide for setting up electrochemical reactors and highlight crucial electrochemical techniques to determine electroactivity and the mode of electron transfer in novel organisms.
Collapse
Affiliation(s)
- Mon Oo Yee
- Nordcee, Department of Biology, University of Southern Denmark, Odense, DK-5230, Denmark
| | | | | | | |
Collapse
|