Ahmed I, Wageh S, Rehman W, Iqbal J, Mir S, Al-Ghamdi A, Khalid M, Numan A. Evaluation of the Synergistic Effect of Graphene Oxide Sheets and Co
3O
4 Wrapped with Vertically Aligned Arrays of Poly (Aniline-Co-Melamine) Nanofibers for Energy Storage Applications.
Polymers (Basel) 2022;
14:2685. [PMID:
35808730 PMCID:
PMC9269555 DOI:
10.3390/polym14132685]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the present study, Co3O4 and graphene oxide (GO) are used as reinforcement materials in a copolymer matrix of poly(aniline-co-melamine) to synthesize ternary composites. The nanocomposite was prepared by oxidative in-situ polymerization and used as an electrode material for energy storage. The SEM images revealed the vertically aligned arrays of copolymer nanofibers, which entirely wrapped the GO sheets and Co3O4 nanoparticles. The EDX and mapping analysis confirmed the elemental composition and uniform distribution in the composite. The XRD patterns unveiled composites' phase purity and crystallinity through characteristic peaks appearing at their respective 2θ values in the XRD spectrum. The FTIR spectrums endorse the successful synthesis of composites, whereas TGA analysis revealed the higher thermal stability of composites. The cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are employed to elucidate the electrochemical features of electrodes. The ternary composite PMCoG-2 displayed the highest specific capacity of 134.36 C/g with 6 phr of GO, whereas PMCoG-1 and PMCoG-3 exhibited the specific capacities of 100.63 and 118.4 C/g having 3 phr and 12 phr GO at a scan rate of 0.003 V/s, respectively. The best electrochemical performance of PMCoG-2 is credited to the synergistic effect of constituents of the composite material.
Collapse