1
|
Zhang C, Yin H, Bai X, Yang Z. Ru doping induced lattice distortion of Cu nanoparticles for boosting electrochemical nonenzymatic hydrogen peroxide sensing. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Chen DN, Jiang LY, Zhang JX, Tang C, Wang AJ, Feng JJ. Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Mikrochim Acta 2022; 189:455. [DOI: 10.1007/s00604-022-05553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
|
3
|
Kundu A, Shetti NP, Basu S, Mondal K, Sharma A, Aminabhavi TM. Versatile Carbon Nanofiber-Based Sensors. ACS APPLIED BIO MATERIALS 2022; 5:4086-4102. [PMID: 36040854 DOI: 10.1021/acsabm.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanofibers (CNFs) display colossal potential in different fields like energy, catalysis, biomedicine, sensing, and environmental science. CNFs have revealed extensive uses in various sensing platforms due to their distinctive structure, properties, function, and accessible surface functionalization capabilities. This review presents insight into various fabrication methods for CNFs like electrospinning, chemical vapor deposition, and template methods with merits and demerits of each technique. Also, we give a brief overview of CNF functionalization. Their unique physical and chemical properties make them promising candidates for the sensor applications. This review offers detailed discussion of sensing applications (strain sensor, biosensor, small molecule detection, food preservative detection, toxicity biomarker detection, and gas sensor). Various sensing applications of CNF like human motion monitoring and energy storage and conversion are discussed in brief. The challenges and obstacles associated with CNFs for futuristic applications are discussed. This review will be helpful for readers to understand the different fabrication methods and explore various applications of the versatile CNFs.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| |
Collapse
|
4
|
Morais A, Rijo P, Batanero B, Nicolai M. Low Platinum-Content Electrocatalysts for Highly Sensitive Detection of Endogenously Released H2O2. BIOSENSORS 2022; 12:bios12090672. [PMID: 36140056 PMCID: PMC9496631 DOI: 10.3390/bios12090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The commercial viability of electrochemical sensors requires high catalytic efficiency electrode materials. A sluggish reaction of the sensor’s primary target species will require a high overpotential and, consequently, an excessive load of catalyst material to be used. Therefore, it is essential to understand nanocatalysts’ fundamental structures and typical catalytic properties to choose the most efficient material according to the biosensor target species. Catalytic activities of Pt-based catalysts have been significantly improved over the decades. Thus, electrodes using platinum nanocatalysts have demonstrated high power densities, with Pt loading considerably reduced on the electrodes. The high surface-to-volume ratio, higher electron transfer rate, and the simple functionalisation process are the main reasons that transition metal NPs have gained much attention in constructing high-sensitivity sensors. This study has designed to describe and highlight the performances of the different Pt-based bimetallic nanoparticles and alloys as an enzyme-free catalytic material for the sensitive electrochemical detection of H2O2. The current analysis may provide a promising platform for the prospective construction of Pt-based electrodes and their affinity matrix.
Collapse
Affiliation(s)
- Ana Morais
- CBIOS—Universidade Lusófona´s Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
- Department of Organic Chemistry & Inorganic Chemistry, University of Alcala, 28805 Alcala de Henares, Spain
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona´s Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
- iMed.Ulisboa—Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Belen Batanero
- Department of Organic Chemistry & Inorganic Chemistry, University of Alcala, 28805 Alcala de Henares, Spain
| | - Marisa Nicolai
- CBIOS—Universidade Lusófona´s Research Centre for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
5
|
Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells. NANOMATERIALS 2022; 12:nano12020258. [PMID: 35055275 PMCID: PMC8781777 DOI: 10.3390/nano12020258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, is produced in mammalian systems and is closely associated with pathological and physiological functions. Nevertheless, the complete conversion of H2S is still unpredictable owing to the limited number of sensors for accurate and quantitative detection of H2S in biological samples. In this study, we constructed a disposable electrochemical sensor based on PtNi alloy nanoparticles (PtNi NPs) for sensitive and specific in situ monitoring of H2S released by human breast cancer cells. PtNi alloy NPs with an average size of 5.6 nm were prepared by a simple hydrothermal approach. The conversion of different forms of sulfides (e.g., H2S, HS-, and S2-) under various physiological conditions hindered the direct detection of H2S in live cells. PtNi NPs catalyze the electrochemical oxidation of H2S in a neutral phosphate buffer (PB, pH 7.0). The PtNi-based sensing platform demonstrated a linear detection range of 0.013-1031 µM and the limit of detection was 0.004 µM (S/N = 3). Moreover, the PtNi sensor exhibited a sensitivity of 0.323 μA μM-1 cm-2. In addition, the stability, repeatability, reproducibility, and anti-interference ability of the PtNi sensor exhibited satisfactory results. The PtNi sensor was able to successfully quantify H2S in pond water, urine, and saliva samples. Finally, the biocompatible PtNi electrode was effectively employed for the real-time quantification of H2S released from breast cancer cells and mouse fibroblasts.
Collapse
|
6
|
Feeney SG, LaFreniere JMJ, Halpern JM. Perspective on Nanofiber Electrochemical Sensors: Design of Relative Selectivity Experiments. Polymers (Basel) 2021; 13:3706. [PMID: 34771266 PMCID: PMC8588248 DOI: 10.3390/polym13213706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
The use of nanofibers creates the ability for non-enzymatic sensing in various applications and greatly improves the sensitivity, speed, and accuracy of electrochemical sensors for a wide variety of analytes. The high surface area to volume ratio of the fibers as well as their high porosity, even when compared to other common nanostructures, allows for enhanced electrocatalytic, adsorptive, and analyte-specific recognition mechanisms. Nanofibers have the potential to rival and replace materials used in electrochemical sensing. As more types of nanofibers are developed and tested for new applications, more consistent and refined selectivity experiments are needed. We applied this idea in a review of interferant control experiments and real sample analyses. The goal of this review is to provide guidelines for acceptable nanofiber sensor selectivity experiments with considerations for electrocatalytic, adsorptive, and analyte-specific recognition mechanisms. The intended presented review and guidelines will be of particular use to junior researchers designing their first control experiments, but could be used as a reference for anyone designing selectivity experiments for non-enzymatic sensors including nanofibers. We indicate the importance of testing both interferants in complex media and mechanistic interferants in the selectivity analysis of newly developed nanofiber sensor surfaces.
Collapse
Affiliation(s)
- Stanley G. Feeney
- Department of Chemical Engineering, University of New Hampshire, Durham, 03824 NH, USA;
| | | | - Jeffrey Mark Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, 03824 NH, USA;
| |
Collapse
|
7
|
Del Real Mata C, Siavash Moakhar R, Hosseini II, Jalali M, Mahshid S. A nanostructured microfluidic device for plasmon-assisted electrochemical detection of hydrogen peroxide released from cancer cells. NANOSCALE 2021; 13:14316-14329. [PMID: 34477715 DOI: 10.1039/d0nr07608b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-invasive liquid biopsies offer hope for a rapid, risk-free, real-time glimpse into cancer diagnostics. Recently, hydrogen peroxide (H2O2) was identified as a cancer biomarker due to its continued release from cancer cells compared to normal cells. The precise monitoring and quantification of H2O2 are hindered by its low concentration and the limit of detection (LOD) in traditional sensing methods. Plasmon-assisted electrochemical sensors with their high sensitivity and low LOD make a suitable candidate for effective detection of H2O2, yet their electrical properties need to be improved. Here, we propose a new nanostructured microfluidic device for ultrasensitive, quantitative detection of H2O2 released from cancer cells in a portable fashion. The fluidic device features a series of self-organized gold nanocavities, enhanced with graphene nanosheets having optoelectrical properties, which facilitate the plasmon-assisted electrochemical detection of H2O2 released from human cells. Remarkably, the device can successfully measure the released H2O2 from breast cancer (MCF-7) and prostate cancer (PC3) cells in human plasma. Briefly, direct amperometric detection of H2O2 under simulated visible light illumination showed a superb LOD of 1 pM in a linear range of 1 pM-10 μM. We thoroughly studied the formation of self-organized plasmonic nanocavities on gold electrodes via surface and photo-electrochemical characterization techniques. In addition, the finite-difference time domain (FDTD) simulation of the electric field demonstrates the intensity of charge distribution at the nanocavity structure edges under visible light illumination. The superb LOD of the proposed electrode combining gold plasmonic nanocavities and graphene sheets paves the way for the development of non-invasive plasmon-assisted electrochemical sensors that can effectively detect low concentrations of H2O2 released from cancer cells.
Collapse
|
8
|
Lei L, Zhang Y, Jiang Y, Xiong L, Liu Y, Li CM. Oxygen‐vacancy‐enhanced Catalytic Activity of Au@Co
3
O
4
/CeO
2
Yolk‐shell Nanocomposite to Electrochemically Detect Hydrogen Peroxide. ELECTROANAL 2021. [DOI: 10.1002/elan.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lingli Lei
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Yuanyuan Zhang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Ying Jiang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Lulu Xiong
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Yingshuai Liu
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
| | - Chang Ming Li
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education School of Materials and Energy Southwest University Chongqing 400715 P. R. China
- School of Material Science and Engineering Institute of Materials Science and Devices Suzhou University of Science and Technology Suzhou 215011 P. R. China
- Institute of Advanced Cross-field Science and College of Life Science Qingdao University Qingdao 200671 P. R. China
| |
Collapse
|
9
|
Wu Y, Lu L, Yu Z, Wang X. Electrochemical sensor based on the Mn 3O 4/CeO 2 nanocomposite with abundant oxygen vacancies for highly sensitive detection of hydrogen peroxide released from living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1672-1680. [PMID: 33861233 DOI: 10.1039/d1ay00085c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Based on the strategy of increasing the number of oxygen vacancies to improve the catalytic performance, we have developed a novel electrochemical sensor based on the multivalent metal oxides cerium dioxide and manganous oxide (Mn3O4/CeO2) for reliable determination of extracellular hydrogen peroxide (H2O2) released from living cells. The Mn3O4/CeO2 nanocomposite was characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical performance of the Mn3O4/CeO2 nanocomposite modified glassy carbon electrode (Mn3O4/CeO2/GCE) was investigated. Owing to the abundant oxygen vacancies and strong synergistic effect between the multivalent Ce and Mn, the sensor exhibited excellent catalytic activity and selectivity for the electrochemical detection of H2O2 with a low quantitation limit of 2 nM. Moreover, Mn3O4/CeO2/GCE exhibited excellent reproducibility, repeatability, and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was able to determine H2O2 released from living cells with satisfactory results. The results showed that the Mn3O4/CeO2 sensor is a promising candidate for a nanoenzymatic H2O2 sensor with the possibility of applications in physiology and diagnosis.
Collapse
Affiliation(s)
- Yalin Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | | | | | | |
Collapse
|
10
|
Yu Y, Peng J, Pan M, Ming Y, Li Y, Yuan L, Liu Q, Han R, Hao Y, Yang Y, Hu D, Li H, Qian Z. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis. SMALL METHODS 2021; 5:e2001212. [PMID: 34928089 DOI: 10.1002/smtd.202001212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/01/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Yan Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yang Ming
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yan Li
- College of Optoelectronics Technology Chengdu University of Information Technology Chengdu 610225 China
| | - Liping Yuan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yun Yang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - He Li
- College of Optoelectronics Technology Chengdu University of Information Technology Chengdu 610225 China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
11
|
Baghali M, Jayathilaka W, Ramakrishna S. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:558. [PMID: 33503924 PMCID: PMC7865989 DOI: 10.3390/ma14030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Electrospinning is one of the most successful and efficient techniques for the fabrication of one-dimensional nanofibrous materials as they have widely been utilized in multiple application fields due to their intrinsic properties like high porosity, large surface area, good connectivity, wettability, and ease of fabrication from various materials. Together with current trends on energy conservation and environment remediation, a number of researchers have focused on the applications of nanofibers and their composites in this field as they have achieved some key results along the way with multiple materials and designs. In this review, recent advances on the application of nanofibers in the areas-including energy conversion, energy storage, and environmental aspects-are summarized with an outlook on their materials and structural designs. Also, this will provide a detailed overview on the future directions of demanding energy and environment fields.
Collapse
Affiliation(s)
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore; (M.B.); (W.A.D.M.J.)
| |
Collapse
|
12
|
Hamaloğlu KÖ, Tosun RB, Ulu S, Kayı H, Kavaklı C, Kavaklı PA, Kip Ç, Tuncel A. Monodisperse-porous cerium oxide microspheres as a new support with appreciable catalytic activity for a composite catalyst in benzyl alcohol oxidation. NEW J CHEM 2021. [DOI: 10.1039/d0nj05367h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monodisperse porous ceria microspheres as a support with individual catalytic activity, facile post-functionalization and high surface area for heterogeneous catalysis.
Collapse
Affiliation(s)
| | | | - Serap Ulu
- Chemical Engineering Department
- Hacettepe University
- Beytepe
- Turkey
| | - Hakan Kayı
- Chemical Engineering Department
- Ankara University
- Beytepe
- Turkey
| | | | | | - Çiğdem Kip
- Chemical Engineering Department
- Hacettepe University
- Beytepe
- Turkey
| | - Ali Tuncel
- Chemical Engineering Department
- Hacettepe University
- Beytepe
- Turkey
- Division of Nanotechnology
| |
Collapse
|
13
|
Duan D, Ding Y, Li L, Ma G. Rapid quantitative detection of melatonin by electrochemical sensor based on carbon nanofibers embedded with FeCo alloy nanoparticles. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Yadav D, Amini F, Ehrmann A. Recent advances in carbon nanofibers and their applications – A review. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109963] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Wang L, Wang L, Yang G, Xie Q, Zhong S, Su X, Hou Y, Zhang B. Improvement of Sensing Properties for Copper Phthalocyanine Sensors Based on Polymer Nanofibers Scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4532-4539. [PMID: 32272836 DOI: 10.1021/acs.langmuir.9b03636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An effectual and understandable route for the fabrication techniques of stereoscopic NO2 sensor is provided in this work. As the gas-sensing layer of the sensor, copper phthalocyanine (CuPc) grew on the top of poly(vinyl alcohol) (PVA) nanofibers (NFs). The sensitivity of the CuPc/PVA NFs stereoscopic sensors to NO2 was over 829%/ppm, while the sensitivity of the continuous CuPc films sensors was 2 orders of magnitude lower than that of the stereoscopic ones. To the responsivities at 25 ppm of NO2, the CuPc/PVA NFs stereoscopic sensors were about four times stronger than that of the continuous CuPc films sensors. For the recovery time, the CuPc/PVA NFs stereoscopic sensors were over eight times faster than the continuous CuPc films sensors. This general tactic can be used to prepare various toxic gas sensors to improve the overall performance of the devices.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Lijuan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Guocheng Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Qiang Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Sai Zhong
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Xin Su
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Yuhang Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Bo Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| |
Collapse
|
16
|
Wu Y, Zhang Y, Lv X, Mao C, Zhou Y, Wu W, Zhang H, Huang Z. Synthesis of polymeric ionic liquids mircrospheres/Pd nanoparticles/CeO2 core-shell structure catalyst for catalytic oxidation of benzyl alcohol. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Li G, Sun P, Wu F, Zhao J, Han D, Cui G. Significant enhancement in the electrochemical determination of 4-aminophenol from nanoporous gold by decorating with a Pd@CeO2 composite film. NEW J CHEM 2020. [DOI: 10.1039/c9nj05728e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An electrode based on Pd@CeO2 nanocomposite-decorated nanoporous gold on a carbon fiber paper was achieved, which demonstrated excellent performance in 4-aminophenol determination.
Collapse
Affiliation(s)
- Gang Li
- School of Mechanical and Automotive Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Peng Sun
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Fanggen Wu
- School of Mechanical and Automotive Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science
- c/o School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
18
|
Khachornsakkul K, Dungchai W. Development of an ultrasound-enhanced smartphone colorimetric biosensor for ultrasensitive hydrogen peroxide detection and its applications. RSC Adv 2020; 10:24463-24471. [PMID: 35516182 PMCID: PMC9055123 DOI: 10.1039/d0ra03792c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
In this work, we developed the first ultrasound technique enhanced smartphone application for highly sensitive determination of hydrogen peroxide (H2O2). The measurement technique is based on the change in color intensity due to the transformation of tetramethylbenzidine (TMB) to oxidized tetramethylbenzidine (oxTMB) by the oxidation process with hydroxyl radical (OH˙) from the oxidation etching of silver nanoparticles (AgNPs) and its ultrasound usability. The oxTMB product occurs without peroxidase and can be detected with a saturation channel using HSV methodology via the application of a smartphone. To prove the peroxidase mimic property, our proposed method was also validated by determination of certain biomolecules, including glucose, uric acid, acetylcholine and total cholesterol, of which the known amounts are a valuable diagnostic tool. The proposed method provided the lowest limits of detection (LOD) of 2.0, 5.0, 12.50, 7.50, and 10.0 nmol L−1 for H2O2, glucose, uric acid, acetylcholine, and cholesterol, respectively, when compared with LODs obtained from other smartphone colorimetric methods. Reproducibility was calculated from the detection of H2O2 at 25.0 and 50.0 nmol L−1 with the highest standard deviations of 3.47 and 4.58%, respectively. Additionally, the determination of all analytes in human urine samples indicated recoveries in the range of 96–104% with the highest relative standard deviation of 3.98%, offering high accuracy and precision. Our research shows the novel compatibility of basic technology and chemical methodology with green chemistry principles by reducing a high-power process and organic solvent as well as exhibiting good colorimetric performance and effective sensitivity and selectivity. Thus, our developed method can be applied for point-of-care medical diagnosis. In this work, we developed the first ultrasound technique enhanced smartphone application for highly sensitive determination of hydrogen peroxide (H2O2).![]()
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Chemistry
- Faculty of Science
- King Mongkut's University of Technology Thonburi
- Bangkok
- Thailand
| | - Wijitar Dungchai
- Department of Chemistry
- Faculty of Science
- King Mongkut's University of Technology Thonburi
- Bangkok
- Thailand
| |
Collapse
|
19
|
Zhang S, Jia Z, Liu T, Wei G, Su Z. Electrospinning Nanoparticles-Based Materials Interfaces for Sensor Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3977. [PMID: 31540104 PMCID: PMC6767230 DOI: 10.3390/s19183977] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022]
Abstract
Electrospinning is a facile technique to fabricate nanofibrous materials with adjustable structure, property, and functions. Electrospun materials have exhibited wide applications in the fields of materials science, biomedicine, tissue engineering, energy storage, environmental science, sensing, and others. In this review, we present recent advance in the fabrication of nanoparticles (NPs)-based materials interfaces through electrospinning technique and their applications for high-performance sensors. To achieve this aim, first the strategies for fabricating various materials interfaces through electrospinning NPs, such as metallic, oxide, alloy/metal oxide, and carbon NPs, are demonstrated and discussed, and then the sensor applications of the fabricated NPs-based materials interfaces in electrochemical, electric, fluorescent, colorimetric, surface-enhanced Raman scattering, photoelectric, and chemoresistance-based sensing and detection are presented and discussed in detail. We believe that this study will be helpful for readers to understand the fabrication of functional materials interfaces by electrospinning, and at the same time will promote the design and fabrication of electrospun nano/micro-devices for wider applications in bioanalysis and label-free sensors.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhenxin Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
20
|
Wang Z, Wu S, Wang J, Yu A, Wei G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. NANOMATERIALS 2019; 9:nano9071045. [PMID: 31336563 PMCID: PMC6669495 DOI: 10.3390/nano9071045] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical vapor deposition and electrospinning techniques with subsequent chemical treatment. Meanwhile, the surfaces of CNFs are easy to modify with various materials to extend the applications of CNF-based hybrid nanomaterials in multiple fields. In this review, we focus on the design, synthesis, and sensor applications of CNF-based functional nanomaterials. The fabrication strategies of CNF-based functional nanomaterials by adding metallic nanoparticles (NPs), metal oxide NPs, alloy, silica, polymers, and others into CNFs are introduced and discussed. In addition, the sensor applications of CNF-based nanomaterials for detecting gas, strain, pressure, small molecule, and biomacromolecules are demonstrated in detail. This work will be beneficial for the readers to understand the strategies for fabricating various CNF-based nanomaterials, and explore new applications in energy, catalysis, and environmental science.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Shasha Wu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Jian Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Along Yu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266077, China.
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
21
|
A Facile One-Step Synthesis of Cuprous Oxide/Silver Nanocomposites as Efficient Electrode-Modifying Materials for Nonenzyme Hydrogen Peroxide Sensor. NANOMATERIALS 2019; 9:nano9040523. [PMID: 30987101 PMCID: PMC6523812 DOI: 10.3390/nano9040523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Cuprous oxide/silver (Cu2O/Ag) nanocomposites were prepared via a facile one-step method and used to construct an electrochemical sensor for hydrogen peroxide (H2O2) detection. In this method, AgNO3 and Cu(NO3)2 were reduced to Cu2O/Ag nanocomposites by glucose in the presence of hexadecyl trimethyl ammonium bromide (CTAB) at a low temperature. The optimum condition was the molar ratio of silver nitrate and copper nitrate of 1:10, the temperature of 50 °C. Under this condition, Cu2O/Ag nanocomposites were obtained with uniformly distributed and tightly combined Cu2O and Ag nanoparticles. The size of Cu2O particles was less than 100 nm and that of Ag particles was less than 20 nm. Electrochemical experiments indicate that the Cu2O/Ag nanocomposites-based sensor possesses an excellent performance toward H2O2, showing a linear range of 0.2 to 4000 μM, a high sensitivity of 87.0 μA mM−1 cm−2, and a low detection limit of 0.2 μM. The anti-interference capability experiments indicate this sensor has good selectivity toward H2O2. Additionally, the H2O2 recovery tests of the sensor in diluted milk solution signify its potential application in routine H2O2 analysis.
Collapse
|