1
|
Vereshchagin AA, Volkov AI, Novoselova JV, Panjwani NA, Yankin AN, Sizov VV, Lukyanov DA, Behrends J, Levin OV. Harmonizing Energies: The Interplay Between a Nonplanar SalEn-Type Molecule and a TEMPO Moiety in a New Hybrid Energy-Storing Redox-Conducting Polymer. Macromol Rapid Commun 2024; 45:e2400074. [PMID: 38593474 DOI: 10.1002/marc.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Redox-conducting polymers based on SalEn-type complexes have attracted considerable attention due to their potential applications in electrochemical devices. However, their charge transfer mechanisms, physical and electrochemical properties remain unclear, hindering their rational design and optimization. This study aims to establish the influence of monomer geometry on the polymer's properties by investigating the properties of novel nonplanar SalEn-type complexes, poly[N,N'-bis(salicylidene)propylene-2-(hydroxy)diaminonickel(II)], and its analog with 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)-substituted bridge (MTS). To elucidate the charge transfer mechanism, operando UV-Vis spectroelectrochemical analysis, electrochemical impedance spectroscopy, and electron paramagnetic resonance are employed. Introducing TEMPO into the bridge moiety enhanced the specific capacity of the poly(MTS) material to 95 mA h g-1, attributed to TEMPO's and conductive backbone's charge storage capabilities. Replacement of the ethylenediimino-bridge with a 1,3-propylenediimino- bridge induced significant changes in the complex geometry and material's morphology, electrochemical, and spectral properties. At nearly the same potential, polaron and bipolaron particles emerged, suggesting intriguing features at the overlap point of the electroactivity potentials ranges of polaron-bipolaron and TEMPO, such as a disruption in the connection between TEMPO and the conjugation chain or intramolecular charge transfer. These results offer valuable insights for optimizing strategies to create organic materials with tailored properties for use in catalysis and battery applications.
Collapse
Affiliation(s)
- Anatoliy A Vereshchagin
- Saint Petersburg State University 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
- Berlin Joint EPR Lab, Fachbereich Physik Freie Universität Berlin, 14195, Berlin, Germany
| | - Alexey I Volkov
- Saint Petersburg State University 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Julia V Novoselova
- Saint Petersburg State University 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik Freie Universität Berlin, 14195, Berlin, Germany
| | - Andrei N Yankin
- ITMO University Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russia
| | - Vladimir V Sizov
- Saint Petersburg State University 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Daniil A Lukyanov
- Saint Petersburg State University 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik Freie Universität Berlin, 14195, Berlin, Germany
| | - Oleg V Levin
- Saint Petersburg State University 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
2
|
Uncovering the mechanism of water-promoted electrochemical degradation of NiSalen polymers. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Lukyanov DA, Sizov VV, Volkov AI, Beletskii EV, Yankin AN, Alekseeva EV, Levin OV. Tuning the Charge Transport in Nickel Salicylaldimine Polymers by the Ligand Structure. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248798. [PMID: 36557930 PMCID: PMC9787065 DOI: 10.3390/molecules27248798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The conductivity of the polymeric energy storage materials is the key factor limiting their performance. Conductivity of polymeric NiSalen materials, a prospective class of energy storage materials, was found to depend strongly on the length of the bridge between the nitrogen atoms of the ligand. Polymers obtained from the complexes containing C3 alkyl and hydroxyalkyl bridges showed an electrical conductivity one order of magnitude lower than those derived from more common complexes with C2 alkyl bridges. The observed difference was studied by means of cyclic voltammetry on interdigitated electrodes and operando spectroelectrochemistry, combined with density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Daniil A. Lukyanov
- Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia
| | - Vladimir V. Sizov
- Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia
| | - Alexey I. Volkov
- Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia
| | - Evgenii V. Beletskii
- Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia
| | - Andrey N. Yankin
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49A, 197101 St. Petersburg, Russia
| | - Elena V. Alekseeva
- Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia
| | - Oleg V. Levin
- Institute of Chemistry, Saint Petersburg University, 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-(812)-4286900
| |
Collapse
|
4
|
Vereshchagin AA, Potapenkov VV, Vlasov PS, Lukyanov DA, Levin OV. Optimization of Sulfonated Polycatechol:PEDOT Energy Storage Performance by the Morphology Control. NANOMATERIALS 2022; 12:nano12111917. [PMID: 35683772 PMCID: PMC9182356 DOI: 10.3390/nano12111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Anionic catechol-containing polymers represent a promising class of functional dopants for the capacity improvement of conductive polymers. For example, sulfonated poly(vinylcatechol) SPVC with outstanding theoretical capacity was used as a dopant for poly(ethylenedixythiophene) (PEDOT) conductive polymer, increasing its energy storage performance. However, such materials suffer from insufficient utilization of the theoretical capacity of SPVC originating from non-optimal morphology. In the present study, we performed systematic optimization of the composition and morphology of the PEDOT:SPVC material as a function of the deposition parameters to overcome this problem. As a result, a capacity of 95 mAh·g−1 was achieved in a thin film demonstrating considerable electrochemical stability: 75% capacity retention after 100 cycles and 57% after 1000 cycles. Since the capacity was found to suffer from thickness limitation, a nanocomposite of PEDOT:SPVC and single-walled carbon nanotubes with high PEDOT:SPVC loading was fabricated, yielding the capacitance 178 F·g−1 or 89 F·cm−2. The capacity values exceed non-optimized film twofold for thin film and 1.33 times for nanocomposite with carbon nanotubes. The obtained results demonstrate the importance of fine-tuning of the composition and morphology of the PEDOT:SPVC materials to ensure optimal interactions between the redox/anionic and conductive components.
Collapse
|
5
|
Key Features of TEMPO-Containing Polymers for Energy Storage and Catalytic Systems. ENERGIES 2022. [DOI: 10.3390/en15072699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The need for environmentally benign portable energy storage drives research on organic batteries and catalytic systems. These systems are a promising replacement for commonly used energy storage devices that rely on limited resources such as lithium and rare earth metals. The redox-active TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl) fragment is a popular component of organic systems, as its benefits include remarkable electrochemical performance and decent physical properties. TEMPO is also known to be an efficient catalyst for alcohol oxidation, oxygen reduction, and various complex organic reactions. It can be attached to various aliphatic and conductive polymers to form high-loading catalysis systems. The performance and efficiency of TEMPO-containing materials strongly depend on the molecular structure, and thus rational design of such compounds is vital for successful implementation. We discuss synthetic approaches for producing electroactive polymers based on conductive and non-conductive backbones with organic radical substituents, fundamental aspects of electrochemistry of such materials, and their application in energy storage devices, such as batteries, redox-flow cells, and electrocatalytic systems. We compare the performance of the materials with different architectures, providing an overview of diverse charge interactions for hybrid materials, and presenting promising research opportunities for the future of this area.
Collapse
|
6
|
Lukyanov DA, Vereshchagin AA, Beletskii EV, Atangulov AB, Yankin AN, Sizov VV, Levin OV. Nickel Salicylideniminato 1D MOFs
via
Electrochemical Polymerization. ChemElectroChem 2022. [DOI: 10.1002/celc.202101316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniil A. Lukyanov
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | | | - Evgenii V. Beletskii
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | - Arslan B. Atangulov
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | - Andrei N. Yankin
- ITMO University Kronverksky Pr. 49, bldg. A St. Petersburg 197101 Russian Federation
| | - Vladimir V. Sizov
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | - Oleg V. Levin
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| |
Collapse
|
7
|
Tomczyk D, Bukowski W, Bester K, Kaczmarek M. Electrocatalytic Properties of Ni(II) Schiff Base Complex Polymer Films. MATERIALS (BASEL, SWITZERLAND) 2021; 15:191. [PMID: 35009337 PMCID: PMC8745840 DOI: 10.3390/ma15010191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
Platinum electrodes were modified with polymers of the (±)-trans-N,N'-bis(salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn)]) and (±)-trans-N,N'-bis(3,3'-tert-Bu-salicylidene)-1,2-cyclohexanediaminenickel(II) ([Ni(salcn(Bu))]) complexes to study their electrocatalytic and electroanalytical properties. Poly[Ni(salcn)] and poly[Ni(salcn(Bu))]) modified electrodes catalyze the oxidation of catechol, aspartic acid and NO2-. In the case of poly[Ni(salcn)] modified electrodes, the electrocatalysis process depends on the electroactive surface coverage. The films with low electroactive surface coverage are only a barrier in the path of the reducer to the electrode surface. The films with more electroactive surface coverage ensure both electrocatalysis inside the film and oxidation of the reducer directly on the electrode surface. In the films with the most electroactive surface coverage, electrocatalysis occurs only at the polymer-solution interface. The analysis was based on cyclic voltammetry, EQCM (electrochemical quartz crystal microbalance) and rotating disc electrode method.
Collapse
Affiliation(s)
- Danuta Tomczyk
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Lodz, Poland;
| | - Wiktor Bukowski
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszow, Poland; (W.B.); (K.B.)
| | - Karol Bester
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców W-wy 6, 35-959 Rzeszow, Poland; (W.B.); (K.B.)
| | - Michalina Kaczmarek
- Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403 Lodz, Poland;
| |
Collapse
|
8
|
Begum R, Rehman MU, Shahid K, Haider A, Iqbal M, Tahir MN, Ali S. Synthesis, structural elucidation, DNA-binding and biological activity of nickel(II) mixed ligand carboxylate complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
2-Hydroxy-3-(4-oxy(2,2,6,6-tetramethylpiperidin-1-oxyl)butoxy)benzaldehyde. MOLBANK 2021. [DOI: 10.3390/m1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Salen-type complexes with transition metals and corresponding polymers attract great scientific interest due to their high electrochemical properties and potential for use as part of next generation organic energy storage devices. Because of their good conductivity but relatively low capacity, energy-intensive additives such as quinones or TEMPO fragments can significantly enhance the capacitive characteristics of the electrode materials. Herein, we report a preparation of precursor for a modified Salen-type complex, the substituted 2,3-Dihydroxybenzaldehyde by butoxy linkers with TEMPO fragment using alkylation reaction. The resulting product was characterized by the 1H and 13C, COSY, HMBC, HSQC nuclear magnetic resonance (NMR), ESI–high resolution mass spectrometry (ESI–HRMS), and Fourier-transform infrared spectroscopy (FTIR). The reported approach opens the way for easy modification of Salen-type complexes in order to increase their specific characteristics.
Collapse
|
10
|
Chepurnaya IA, Karushev MP, Alekseeva EV, Lukyanov DA, Levin OV. Redox-conducting polymers based on metal-salen complexes for energy storage applications. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal-salen polymers are electrochemically active metallopolymers functionalized with multiple redox centers, with a potential for high performance in various fields such as heterogeneous catalysis, chemical sensors, energy conversion, saving, and storage. In light of the growing world demand for the development of superior energy storage systems, the prospects of employing these polymers for advancing the performance of supercapacitors and lithium-ion batteries are particularly interesting. This article provides a general overview of the results of investigating key structure-property relationships of metal-salen polymers and using them to design polymer-modified electrodes with improved energy storage characteristics. The results of independent and collaborative studies conducted by the members of two research groups currently affiliated to the Saint–Petersburg State University and the Ioffe Institute, respectively, along with the related data from other studies are presented in this review.
Collapse
Affiliation(s)
| | | | - Elena V. Alekseeva
- Institute of Chemistry, Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Daniil A. Lukyanov
- Institute of Chemistry, Saint Petersburg State University , Saint Petersburg , Russian Federation
| | - Oleg V. Levin
- Institute of Chemistry, Saint Petersburg State University , Saint Petersburg , Russian Federation
| |
Collapse
|
11
|
Yankin AN, Lukyanov DA, Beletskii EV, Bakulina OY, Vlasov PS, Levin OV. Aryl‐Aryl Coupling of Salicylic Aldehydes through Oxidative CH‐activation in Nickel Salen Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrei N. Yankin
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Daniil A. Lukyanov
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Evgenii V. Beletskii
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Olga Yu. Bakulina
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Petr S. Vlasov
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| | - Oleg V. Levin
- Institute of ChemistrySaint Petersburg State University, 17/9 Universitetskaya nab. St. Petersburg 199034 Russia
| |
Collapse
|