1
|
Wang C, Yang R, Wang G, Liu S. An electrochemical biosensor for Staphylococcus aureus detection based on a multilevel surface 3D micro/nanostructure. Analyst 2024; 149:2594-2599. [PMID: 38526507 DOI: 10.1039/d4an00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Detection of pathogens is one of the key concerns for hospitals, the food industry, water suppliers, or other environmental engineering practices because pathogens can cause a wide range of infectious risks. Staphylococcus aureus (S. aureus) is one of the most common pathogens that are hazardous to human health and its existence is an important index to the safety of food, environmental sanitation, or medical products. In this study, we prepared an electrode with designed surface multilevel 3D micro/nano protrusions for facile and efficient S. aureus detection. The existence of these multilevel protrusions enhanced the adsorption of S. aureus. Hence, the detection limit could be as low as 10 CFU mL-1. Furthermore, the electrode was also successfully used to detect S. aureus in actual samples, such as milk and artificial human tissue fluid. It was found that the recovery of the reported approach showed no significant difference from that of the traditional plate count method. However, compared with the plate count method, the detection process of our approach is much more time-saving and easy-operating. These advantages of the approach we report, such as high sensitivity, reliability, quickness, and user-friendliness, make it a potential platform for detecting S. aureus in relation to the food industry and clinical diagnosis.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Rui Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, P. R. China.
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, P. R. China.
| |
Collapse
|
2
|
Zhou S, Huang P, Cao Y, Hua X, Yang Y, Liu S. Garlic-Derived Exosome-like Nanovesicles-Based Wound Dressing for Staphylococcus aureus Infection Visualization and Treatment. ACS APPLIED BIO MATERIALS 2024; 7:1888-1898. [PMID: 38349328 DOI: 10.1021/acsabm.3c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Garlic-derived exosome-like nanovesicles (GELNs) could function in interspecies communication and may serve as natural therapeutics to regulate the inflammatory response or as nanocarriers to efficiently deliver specific drugs. Staphylococcus aureus (S. aureus) is able to hide within host cells to evade immune clearance and antibiotics, leading to life-threatening infections. On-site detection and efficient treatment of intracellular S. aureus infection in wounds remain challenging. Herein, we report a thermosensitive, injectable, visible GELNs-based wound dressing, Van@GELNs/F127 hydrogel (gel Van@GELNs), which is H2O2-responsive and can slowly release vancomycin into host cells forS. aureus infection visualization and treatment in wounds. GELNs show inherent antibacterial activity, which is significantly enhanced after loading vancomycin. Both GELNs and Van@GELNs have the ability to be internalized by cells, so Van@GELNs are more effective than free vancomycin in killing S. aureus in RAW 264.7 macrophages. When applied to an S. aureus-infected wound on a mouse, the colorless HRP&ABTS/Van@GELNs/F127 solution immediately changes to a green hydrogel and shows better therapeutic effect than vancomycin. Thus, direct visualization by the naked eye and effective treatment of S. aureus infection in wounds are achieved by gel Van@GELNs. We anticipate gel Van@GELNs be applied for the theranostics of S. aureus infection diseases in the clinic in the near future.
Collapse
Affiliation(s)
- Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Puzhen Huang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu Cao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xin Hua
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Li J, Tang Y, Bai Y, Zhang Z, Zhang S, Chen T, Zhao F, Guo Z. A pomegranate seed-structured nanozyme-based colorimetric immunoassay for highly sensitive and specific biosensing of Staphylococcus aureus. Analyst 2024; 149:563-570. [PMID: 38099463 DOI: 10.1039/d3an01621h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus (S. aureus) infections are a serious threat to human health. The development of rapid and sensitive detection methods for pathogenic bacteria is crucial for accurate drug administration. In this research, by combining the advantages of enzyme-linked immunosorbent assay (ELISA), we synthesized nanozymes with high catalytic performance, namely pomegranate seed-structured bimetallic gold-platinum nanomaterials (Ps-PtAu NPs), which can catalyze a colorless TMB substrate into oxidized TMB (oxTMB) with blue color to achieve colorimetric analysis of S. aureus. Under the optimal conditions, the proposed biosensor could quantitatively detect S. aureus at levels ranging from 1.0 × 101 to 1.0 × 106 CFU mL-1 with a limit of detection (LOD) of 3.9 CFU mL-1. Then, an integrated color picker APP on a smartphone enables on-site point-of-care testing (POCT) of S. aureus with LOD as low as 1 CFU mL-1. Meanwhile, the proposed biosensor is successfully applied to the detection of S. aureus in clinical samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jinghui Li
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Yipeng Tang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Yunpeng Bai
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Zhejun Zhang
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Shaopeng Zhang
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Tongyun Chen
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Feng Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Zhigang Guo
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
- Tianjin Cardiovascular Diseases Institute, Tianjin, 300222, China
| |
Collapse
|
4
|
Two-step förster resonance energy transfer amplification for ratiometric detection of pathogenic bacteria in food samples. Food Chem 2022; 404:134492. [DOI: 10.1016/j.foodchem.2022.134492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
5
|
Sandwich Fluorescence Detection of Foodborne Pathogen Staphylococcus aureus with CD Fluorescence Signal Amplification in Food Samples. Foods 2022; 11:foods11070945. [PMID: 35407032 PMCID: PMC8997861 DOI: 10.3390/foods11070945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Timely detection of Staphylococcus aureus (S. aureus) is critical because it can multiply to disease−causing levels in a matter of hours. Herein, a simple and sensitive DNA tetrahedral (Td) fluorescence signal amplifier with blue carbon quantum dots (bCDs) was prepared for sandwich detection of S. aureus. bCD was modified at the apex of Td, and an aptamer on Td was used to accurately identify and “adsorb” the amplifier to the surface of S. aureus. Atomic force microscopy (AFM) demonstrates the successful preparation of this signal amplifier. The fluorescence intensity emitted in this strategy increased 4.72 times. The strategy showed a stronger fluorescence intensity change, sensitivity (linear range of 7.22 × 100–1.44 × 109 CFU/mL with a LOD of 4 CFU/mL), and selectivity. The recovery rate in qualified pasteurized milk and drinking water samples was 96.54% to 104.72%. Compared with simple aptamer sandwich detection, these fluorescence signal amplifiers have improved fluorescence detection of S. aureus. Additionally, this fluorescent signal amplification strategy may be applied to the detection of other food pathogens or environmental microorganisms in the future.
Collapse
|
6
|
Qian J, Huang D, Ni D, Zhao J, Shi Z, Fang M, Xu Z. A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Ouyang Q, Wang L, Ahmad W, Yang Y, Chen Q. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of Staphylococcus aureus in Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9947-9956. [PMID: 34406747 DOI: 10.1021/acs.jafc.1c03625] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the foodborne pathogens that can cause infectious diseases and food poisoning. Herein, colorimetric and fluorescent dual-mode nanoprobes were developed for ultrasensitive detection of S. aureus to immediately respond to public health emergencies, reduce false positives, and improve measurement accuracy and persuasiveness. The nanoprobe consists of aptamer-labeled magnetic nanoparticles (apt-MNPs) as the capture signal probe and horseradish peroxidase and complementary DNA-functionalized upconversion nanoparticles (HRP-UCNPs-cDNA) as the chromogenic signal probe. In the absence of S. aureus, the probe forms an immune complex through base complementation with an observable signal. When S. aureus is introduced to this system, it preferentially binds to the apt-MNPs, releasing HRP-UCNPs-cDNA from the apt-MNPs and restoring the chromogenic probe signal. Under optimum conditions, an ultrasensitive assay of S. aureus was obtained, with limits of detection of 22 CFU mL-1 for fluorescence and 20 CFU mL-1 for colorimetry in a linear range of 56-5.6 × 106 CFU mL-1. Additionally, the standard plate counting method confirmed the reliability and accuracy of the established nanoprobe with an insignificant difference. Hence, the developed dual-mode platform has extensive application prospects for speedy and specific determination of S. aureus in meat.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongcun Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles. Mikrochim Acta 2020; 187:567. [PMID: 32929566 DOI: 10.1007/s00604-020-04547-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
A new ultrasensitive immunosensor is proposed based on the covalently attached anti-protein A antibody (IgY) on deposited gold nanoparticle (AuNP)-modified glassy carbon electrode (GCE) for the electrochemical measurement of Staphylococcus aureus (S. aureus). Chicken IgY as a capture antibody provides highly selective and specific binding to the target bacteria and selectively captures the S. aureus in its three-dimensional space. Due to that it can eliminate the interference from protein G-producing Streptococcus. In addition, the electron-transfer characteristic of [Fe(CN)6]4-/3- is hindered by this combination; as it is reflected on the electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) curves. The proposed immunosensor displays a wide linear dynamic range from 10 to 107 CFU mL-1 with a detection limit of 3.3 CFU mL-1 with RSD 3.0%. It is capable to accurately determine S. aureus in milk and human blood serum as a complex matrix sample with satisfactory recovery of ∼ 97-103%. The immunosensor also displays high selectivity over other bacteria and acceptable stability. Presumably, our study can be regarded as the first one to report chicken IgY in order to detect S. aureus based on an electrochemical method.Graphical abstract.
Collapse
|