1
|
Shinde N, Pumera M. High Performance MXene/MnCo 2O 4 Supercapacitor Device for Powering Small Robotics. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:7339-7345. [PMID: 39464193 PMCID: PMC11500404 DOI: 10.1021/acsaelm.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
The development of advanced energy storage devices is critical for various applications including robotics and portable electronics. The energy storage field faces significant challenges in designing devices that can operate effectively for extended periods while maintaining exceptional electrochemical performance. Supercapacitors, which bridge the gap between batteries and conventional capacitors, offer a promising solution due to their high power density and rapid charge-discharge capabilities. This study focuses on the fabrication and evaluation of a MXene/MnCo2O4 nanocomposite supercapacitor electrode using a simple and cost-effective electrodeposition method on a copper substrate. The MXene/MnCo2O4 nanocomposite exhibits superior electrochemical properties, including a specific capacitance of 668 F g-1, high energy density (35 Wh kg-1), and excellent cycling stability (94.6% retention over 5000 cycles). The combination of MXene and MnCo2O4 enhances the redox activity, electronic conductivity, and structural integrity of the electrode. An asymmetric supercapacitor device, incorporating MXene/MnCo2O4 as the positive electrode and Bi2O3 as the negative electrode, demonstrates remarkable performance in powering small robotics and small electronics. This work underscores the potential of MXene-based nanocomposites for high-performance supercapacitor applications, paving the way for future advancements in energy storage technologies.
Collapse
Affiliation(s)
- Nanasaheb
M. Shinde
- Advanced Nanorobots &
Multiscale Robotics Laboratory, Faculty of Electrical Engineering
and Computer Science, VSB - Technical University
of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Advanced Nanorobots &
Multiscale Robotics Laboratory, Faculty of Electrical Engineering
and Computer Science, VSB - Technical University
of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
| |
Collapse
|
2
|
Oyedotun KO, Makgopa K, Nkambule TT, Mathe MK, Otun KO, Mamba BB. Nanostructured Carbon Fibres (NCF): Fabrication and Application in Supercapacitor Electrode. Polymers (Basel) 2024; 16:1859. [PMID: 39000714 PMCID: PMC11244065 DOI: 10.3390/polym16131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
A facile interconnected nanofibre electrode material derived from polybenzimidazol (PBI) was fabricated for a supercapacitor using a centrifugal spinning technique. The PBI solution in a mixture of dimethyl acetamide (DMA) and N, N-dimethylformamide (DMF) was electrospun to an interconnection of fine nanofibres. The as-prepared material was characterised by using various techniques, which include scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) among others. The specific surface area of the interconnected NCF material was noticed to be around 49 m2 g-1. Electrochemical properties of the material prepared as a single-electrode are methodically studied by adopting cyclic voltammetry, electrochemical impedance spectroscopy, and constant-current charge-discharge techniques. A maximum specific capacitance of 78.4 F g-1 was observed for the electrode at a specific current of 0.5 A g-1 in a 2.5 M KNO3 solution. The electrode could also retain 96.7% of its initial capacitance after a 5000 charge-discharge cycles at 5 A g-1. The observed capacitance and good cycling stability of the electrode are supported by its specific surface area, pore volume, and conductivity. The results obtained for this material indicate its potential as suitable candidate electrode for supercapacitor application.
Collapse
Affiliation(s)
- Kabir O Oyedotun
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Arcadia Campus, Pretoria 0001, South Africa
| | - Thabo T Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Mkhulu K Mathe
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Kabir O Otun
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Bhekie B Mamba
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| |
Collapse
|
3
|
Geng Z, Chen W, Qiu Z, Xu H, Pan D, Chen S. Hierarchical V 4C 3T X@NiO-reduced graphene oxide heterostructure hydrogels and defective reduced graphene oxide hydrogels as free-standing anodes and cathodes for high-performance asymmetric supercapacitors. Phys Chem Chem Phys 2023; 25:9140-9151. [PMID: 36939188 DOI: 10.1039/d3cp00595j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Asymmetric supercapacitors (ASCs) based on a battery-type anode and a capacitive-type cathode have been attracting extensive interest because of their high energy density. Herein, NiO nanosheets are hydrothermally deposited onto a V4C3TX substrate, which are then assembled into a 3D porous heterostructure hydrogel through a graphene oxide-assisted self-convergence hydrothermal process at low temperatures. The resultant hierarchical V4C3TX@NiO-RGO heterostructure hydrogel exhibits an ultrahigh specific capacitance of up to 1014.5 F g-1 at 1 A g-1. In addition, a defective reduced graphene oxide (DRGO) hydrogel is prepared using a cost-effective hydrothermal procedure followed by cobalt-catalyzed gasification, which shows a higher specific capacitance (258 F g-1 at 1 A g-1) than the untreated RGO hydrogel (176 F g-1). These two electrodes are then assembled into an ASC; the device features a stable operating voltage of 1.8 V, a maximum energy density of 86.22 W h kg-1 at 900 W kg-1, and excellent cycling stability at 96.4% capacitance retention after 10 000 cycles at 10 A g-1. The results from this work highlight the unique potential of MXene-based materials for the construction of high-performance ASCs.
Collapse
Affiliation(s)
- Ziyu Geng
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weiwen Chen
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dingjie Pan
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
4
|
Design and characterization of monolayer Ti3C2 MXene/NiCo2O4 nanocones hybrid architecture for asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214544] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Chen W, Hao C, Qiu Z, Zhang X, Xu H, Yu B, Chen S. High-Energy-Density Asymmetric Supercapacitor Based on Free-Standing Ti 3C 2T X@NiO-Reduced Graphene Oxide Heterostructured Anode and Defective Reduced Graphene Oxide Hydrogel Cathode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19534-19546. [PMID: 35446552 DOI: 10.1021/acsami.2c02507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rational design of an asymmetric supercapacitor (ASC) with an expanded operating voltage window has been recognized as a promising strategy to maximize the energy density of the device. Nevertheless, it remains challenging to have electrode materials that feature good electrical conductivity and high specific capacitance. Herein, a 3D layered Ti3C2TX@NiO-reduced graphene oxide (RGO) heterostructured hydrogel was successfully synthesized by uniform deposition of NiO nanoflowers onto Ti3C2TX nanosheets, and the heterostructure was assembled into a 3D porous hydrogel through a hydrothermal GO-gelation process at low temperatures. The resultant Ti3C2TX@NiO-RGO heterostructured hydrogel exhibited an ultrahigh specific capacitance of 979 F g-1 at 0.5 A g-1, in comparison to that of Ti3C2TX@NiO (623 F g-1) and Ti3C2TX (112 F g-1). Separately, a defective RGO (DRGO) hydrogel was found to exhibit a drastic increase in specific capacitance, compared to untreated RGO (261 vs 178 F g-1 at 0.5 A g-1), owing to abundant mesopores. These two materials were then used as free-standing anode and cathode to construct an ASC, which displayed a large operating voltage (1.8 V), a high energy density (79.02 Wh kg-1 at 450 W kg-1 and 45.68 Wh kg-1 at 9000 W kg-1), and remarkable cycling stability (retention of 95.6% of the capacitance after 10,000 cycles at 10 A g-1). This work highlights the unique potential of Ti3C2TX-based heterostructured hydrogels as viable electrode materials for ASCs.
Collapse
Affiliation(s)
- Weiwen Chen
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunfeng Hao
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingzhe Yu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Su JA, Huang CC, Huang CL, Lin YT, Li YY. Activated Microporous Carbon Spheres for Electric Double-Layer Capacitor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Zhang J, Yao Z, Zou W, Shen Q, Fan M, Ma T. Trimetal NiCoMn sulfides cooperated with two-dimensional Ti3C2 for high performance hybrid supercapacitor. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Makgopa K, Ratsoma MS, Raju K, Mabena LF, Modibane KD. One-Step Hydrothermal Synthesis of Nitrogen-Doped Reduced Graphene Oxide/Hausmannite Manganese Oxide for Symmetric and Asymmetric Pseudocapacitors. ACS OMEGA 2021; 6:31421-31434. [PMID: 34869969 PMCID: PMC8637592 DOI: 10.1021/acsomega.1c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the pseudocapacitive performance of nitrogen-doped and undoped reduced graphene oxide/tetragonal hausmannite nanohybrids (N-rGO/Mn3O4 and rGO/Mn3O4) synthesized using a one-pot hydrothermal method is reported. The nanohybrid electrode materials displayed exceptional electrochemical performance relative to their respective individual precursors (i.e., reduced graphene oxide (rGO), nitrogen-doped reduced graphene oxide (N-rGO), and tetragonal hausmannite (Mn3O4)) for symmetric pseudocapacitors. Among the two nanohybrids, N-rGO/Mn3O4 displayed greater performance with a high specific capacitance of 345 F g-1 at a current density of 0.1 A g-1, excellent specific energy of 12.0 Wh kg-1 (0.1 A g-1), and a high power density of 22.5 kW kg-1 (10.0 A g-1), while rGO/Mn3O4 demonstrated a high specific capacitance of 264 F g-1 (0.1 A g-1) with specific energy and power densities of 9.2 Wh kg-1 (0.1 A g-1) and 23.6 kW kg-1 (10.0 A g-1), respectively. Furthermore, the N-rGO/Mn3O4 nanohybrid exhibited an impressive pseudocapacitive performance when fabricated in an asymmetric configuration, having a stable potential window of 2.0 V in 1.0 M Na2SO4 electrolyte. The nanohybrid showed excellent specific energy and power densities of 34.6 Wh kg-1 (0.1 A g-1) and 14.01 kW kg-1 (10.0 A g-1), respectively. These promising results provide a good substance for developing novel carbon-based metal oxide electrode materials in pseudocapacitor applications.
Collapse
Affiliation(s)
- Katlego Makgopa
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Mpho S. Ratsoma
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Kumar Raju
- Electrochemical
Energy Technologies (EET), Energy Centre,
Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Letlhogonolo F. Mabena
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Kwena D. Modibane
- Department
of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop Campus), Sovenga, 0727 Polokwane, South Africa
| |
Collapse
|
10
|
Momodu D, Zeraati AS, Pablos FL, Sundararaj U, Roberts EPL. Hybrid energy storage using nitrogen-doped graphene and layered-MXene (Ti3C2) for stable high-rate supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Tanwar S, Arya A, Gaur A, Sharma AL. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:303002. [PMID: 33892487 DOI: 10.1088/1361-648x/abfb3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2,and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported.
Collapse
Affiliation(s)
- Shweta Tanwar
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anil Arya
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anurag Gaur
- Department of Physics, National Institute of Technology, Kurukshetra-136119, Haryana, India
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
12
|
Liang W, Zhitomirsky I. Composite Fe 3O 4-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2930. [PMID: 34072315 PMCID: PMC8199491 DOI: 10.3390/ma14112930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high areal capacitance (CS). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon nanotube (CNT) electrodes, which show CS of 5.52 F cm-2 in the negative potential range in 0.5 M Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm-2 due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high CS of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.
Collapse
Affiliation(s)
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada;
| |
Collapse
|
13
|
Fang Z, Xu M, Li Q, Qi M, Xu T, Niu Z, Qu N, Gu J, Wang J, Wang D. Over-Reduction-Controlled Mixed-Valent Manganese Oxide with Tunable Mn 2+/Mn 3+ Ratio for High-Performance Asymmetric Supercapacitor with Enhanced Cycling Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2816-2825. [PMID: 33591771 DOI: 10.1021/acs.langmuir.0c03580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manganese oxides composed of various valence states Mnx+ (x = 2, 3, and 4) have attracted wide attention as promising electrode materials for asymmetric supercapacitor. However, the poor electrical conductivity limited their performance and application. Appropriate regulation content of Mnx+ in mixed-valent manganese oxide can tune the electronic structure and further improve their conductivity and performance. Herein, we prepared manganese oxides with different Mn2+/Mn3+ ratios through an over-reduction (OR) strategy for tuning the internal electron structure of mixed-valent manganese, which could make these material oxides a good platform for researching the structure-property relationships. The Mn2+/Mn3+ ratio of manganese oxide could be precisely tuned from 0.6 to 1.7 by controlling the amount of reducing agent for manipulating the redox processes, where the manganese oxide electrode with the most appropriate Mn2+/Mn3+ ratio, as 1.65 (OR4) exhibits large capacitance (274 F g-1) and the assembling asymmetric supercapacitors by combining OR4 (positive) and the commercial activated carbon (as negative) achieved large 2.0 V voltage window and high energy density of 27.7 Wh kg-1 (power density of 500 W kg-1). The cycle lifespan of the OR4//AC could keep about 92.9% after 10 000-cycle tests owing to the Jahn-Teller distortion of the Mn(III)O6 octahedron, which is more competitive compared to other work. Moreover, a red-light-emitting diode (LED) can easily be lit for 15 min by two all-solid supercapacitor devices in a series.
Collapse
Affiliation(s)
- Zixun Fang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ming Xu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qing Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Man Qi
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tongtong Xu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhimin Niu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Nianrui Qu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Desong Wang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
14
|
Arun T, Mohanty A, Rosenkranz A, Wang B, Yu J, Morel MJ, Udayabhaskar R, Hevia SA, Akbari-Fakhrabadi A, Mangalaraja R, Ramadoss A. Role of electrolytes on the electrochemical characteristics of Fe3O4/MXene/RGO composites for supercapacitor applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Mahmoud BA, Mirghni AA, Fasakin O, Oyedotun KO, Manyala N. Bullet-like microstructured nickel ammonium phosphate/graphene foam composite as positive electrode for asymmetric supercapacitors. RSC Adv 2020; 10:16349-16360. [PMID: 35498831 PMCID: PMC9052949 DOI: 10.1039/d0ra02300k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Unique microstructured nickel ammonium phosphate Ni(NH4)2(PO3)4·4H2O and Ni(NH4)2(PO3)4·4H2O/GF composite were successfully synthesized through the hydrothermal method with different graphene foam (GF) mass loading of 30, 60 and 90 mg as a positive electrode for asymmetric supercapacitors. The crystal structure, vibrational mode, texture and morphology of the samples were studied with X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). The prepared materials were tested in both 3-and 2-electrode measurements using 6 M KOH electrolyte. The composite material Ni(NH4)2(PO3)4·4H2O/60 mg exhibited a remarkable gravimetric capacity of 52 mA h g-1, higher than the 34 mA h g-1 obtained for the Ni(NH4)2(PO3)4·4H2O pristine sample, both at 0.5 A g-1. For the fabrication of the asymmetric device, activated carbon from pepper seed (ppAC) was used as a negative electrode while Ni(NH4)2(PO3)4·4H2O/60 mg GF was adopted as the positive electrode. The Ni(NH4)2(PO3)4·4H2O/60 mg GF//ppAC asymmetric device delivered a specific energy of 52 Wh kg-1 with an equivalent specific power of 861 W kg-1 at 1.0 A g-1 within a potential range of 0.0-1.5 V. Moreover, the asymmetric device displayed a capacity retention of about 76% for over 10 000 cycles at a high specific current of 10.0 A g-1.
Collapse
Affiliation(s)
- Badr A Mahmoud
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria Crn Lynnwood and University Road, Hatfield Pretoria 0002 South Africa + 27 124203549
| | - Abdulmajid A Mirghni
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria Crn Lynnwood and University Road, Hatfield Pretoria 0002 South Africa + 27 124203549
| | - Oladepo Fasakin
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria Crn Lynnwood and University Road, Hatfield Pretoria 0002 South Africa + 27 124203549
| | - Kabir O Oyedotun
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria Crn Lynnwood and University Road, Hatfield Pretoria 0002 South Africa + 27 124203549
| | - Ncholu Manyala
- Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria Crn Lynnwood and University Road, Hatfield Pretoria 0002 South Africa + 27 124203549
| |
Collapse
|
16
|
Li L, Wen J, Zhang X. Progress of Two-Dimensional Ti 3 C 2 T x in Supercapacitors. CHEMSUSCHEM 2020; 13:1296-1329. [PMID: 31816166 DOI: 10.1002/cssc.201902679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Exploring stable cycling electrode materials with high energy and power density is the key to accelerating the development and application of supercapacitors. Ti3 C2 Tx , which is the most investigated member of the family of two-dimensional layered transition-metal carbides, has attracted considerable attention, owing to its unique two-dimensional morphology, large interlayer spacing, outstanding metallic conductivity, abundant chemical surface, and ultrahigh volumetric capacitance. However, the inherent restacking tendency of ultrathin Ti3 C2 Tx sheets hinder its practical application. In this review, the synthetic methods and charge-storage mechanisms of Ti3 C2 Tx are stressed to provide clues for improving its electrochemical performance. Functionalization, including architectural construction, hybridization, and surface modification of the Ti3 C2 Tx sheets, to circumvent difficulties and application in supercapacitors is then summarized. Accordingly, the aim is to highlight the opportunities and challenges for Ti3 C2 Tx -based materials in practical applications in supercapacitors.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P.R. China
| | - Jing Wen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P.R. China
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P.R. China
| |
Collapse
|
17
|
Designing of Carbon Nitride Supported ZnCo 2O 4 Hybrid Electrode for High-Performance Energy Storage Applications. Sci Rep 2020; 10:2035. [PMID: 32029858 PMCID: PMC7005029 DOI: 10.1038/s41598-020-58925-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022] Open
Abstract
This study reports a unique graphitic-C3N4 supported ZnCo2O4 composite, synthesized through a facile hydrothermal method to enhance the electrochemical performance of the electrode. The g-C3N4@ZnCo2O4 hybrid composite based electrode exhibits a significant increase in specific surface area and maximum specific capacity of 157 mAhg−1 at 4 Ag−1. Moreover, g-C3N4@ZnCo2O4 electrode maintained significant capacity retention of 90% up to 2500 cycles. Utilizing this composite in the development of the symmetric device, g-C3N4@ZnCo2O4//g-C3N4@ZnCo2O4 displays a specific capacity of 121 mAhg−1. The device exhibits an energy density of 39 Whkg−1 with an equivalent power density of 1478 Wkg−1. A good cycling stability performance with an energy efficiency of 75% and capacity retention of 71% was observed up to 10,000 cycles. The superior performance of g-C3N4@ZnCo2O4 is attributed to the support of the g-C3N4 which increases the surface area, electroactive sites and provides chemical stability for electrochemical performance. The outstanding performance of this exclusive device symbolizes remarkable progress in the direction of high-performance energy storage applications.
Collapse
|
18
|
Shi M, Narayanasamy M, Yang C, Zhao L, Jiang J, Angaiah S, Yan C. 3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135546] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Oyedotun KO, Masikhwa TM, Mirghni AA, Mutuma BK, Manyala N. Electrochemical properties of asymmetric supercapacitor based on optimized carbon-based nickel-cobalt-manganese ternary hydroxide and sulphur-doped carbonized iron-polyaniline electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Zhang X, Shao B, Sun Z, Gao Z, Qin Y, Zhang C, Cui F, Yang X. Platinum Nanoparticle-Deposited Ti3C2Tx MXene for Hydrogen Evolution Reaction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05046] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaobao Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian, Beijing, China
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104-Youyi Road, Haidian, Beijing, China
| | - Baiyi Shao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian, Beijing, China
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104-Youyi Road, Haidian, Beijing, China
| | - Zemin Sun
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian, Beijing, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, Shanxi, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, Shanxi, China
| | - Ce Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104-Youyi Road, Haidian, Beijing, China
| | - Fangming Cui
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104-Youyi Road, Haidian, Beijing, China
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian, Beijing, China
| |
Collapse
|
21
|
A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens Bioelectron 2019; 144:111697. [DOI: 10.1016/j.bios.2019.111697] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
|