1
|
Singh B, Gupta H. Metal-organic frameworks (MOFs) for hybrid water electrolysis: structure-property-performance correlation. Chem Commun (Camb) 2024; 60:8020-8038. [PMID: 38994743 DOI: 10.1039/d4cc02729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Hybrid water electrolysis (HWE) is a promising pathway for the simultaneous production of high-value chemicals and clean H2 fuel. Unlike conventional electrochemical water splitting, which relies on the oxygen evolution reaction (OER), HWE involves the anodic oxidation reaction (AOR). The AORs facilitate the conversion of organic or inorganic compounds at the anode into valuable chemicals, while the cathode carries out the hydrogen evolution reaction (HER) to produce H2. Recent literature has witnessed a surge in papers investigating various AORs with organic and inorganic substrates using a series of transition metal-based catalysts. Over the past two decades, metal-organic frameworks (MOFs) have garnered significant attention for their exceptional performance in electrochemical water splitting. These catalysts possess distinct attributes such as highly porous architectures, customizable morphologies, open facets, high electrochemical surface areas, improved electron transport, and accessible catalytic sites. While MOFs have demonstrated efficiency in electrochemical water splitting, their application in hybrid water electrolysis has only recently been explored. In recent years, a series of articles have been published; yet there is no comprehensive article summarizing MOFs for hybrid water electrolysis. This article aims to fill this gap by delving into the recent progress in MOFs specifically tailored for hybrid water electrolysis. In this article, we systematically discuss the structure-property-performance relationships of various MOFs utilized in hybrid water electrolysis, supported by pioneering examples. We explore how the structure, morphology, and electronic properties of MOFs impact their performance in hybrid water electrolysis, with particular emphasis on value-added chemical generation, H2 production, potential improvement, conversion efficiency, selectivity, faradaic efficiency, and their potential for industrial-scale applications. Furthermore, we address future advancements and challenges in this field, providing insights into the prospects and challenges associated with the continued development and deployment of MOFs for hybrid water electrolysis.
Collapse
Affiliation(s)
- Baghendra Singh
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Harshit Gupta
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Zhao Z, Ke X, Huang J, Zhang Z, Wu Y, Huang G, Tan J, Liu X, Mei Y, Chu J. Design and Synthesis of Transferrable Macro-Sized Continuous Free-Standing Metal-Organic Framework Films for Biosensor Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310189. [PMID: 38468446 PMCID: PMC11187891 DOI: 10.1002/advs.202310189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Xinyi Ke
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Yue Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xuanyong Liu
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Junhao Chu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
| |
Collapse
|
3
|
Xu H, Wang QY, Jiang M, Li SS. Application of valence-variable transition-metal-oxide-based nanomaterials in electrochemical analysis: A review. Anal Chim Acta 2024; 1295:342270. [PMID: 38355227 DOI: 10.1016/j.aca.2024.342270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The construction of materials with rapid electron transfer is considered an effective method for enhancing electrochemical activity in electroanalysis. It has been widely demonstrated that valence changes in transition metal ions can promote electron transfer and thus increase electrochemical activity. Recently, valence-variable transition metal oxides (TMOs) have shown popular application in electrochemical analysis by using their abundant valence state changes to accelerate electron transfer during electrochemical detection. In this review, we summarize recent research advances in valence changes of TMOs and their application in electrochemical analysis. This includes the definition and mechanism of valence change, the association of valence changes with electronic structure, and their applications in electrochemical detection, along with the use of density functional theory (DFT) to simulate the process of electron transfer during valence changes. Finally, the challenges and opportunities for developing and applying valence changes in electrochemical analysis are also identified.
Collapse
Affiliation(s)
- Huan Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Qiu-Yu Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Min Jiang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
4
|
Xu J, Zhang Y, Zhu X, Ling G, Zhang P. Two-mode sensing strategies based on tunable cobalt metal organic framework active sites to detect Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133424. [PMID: 38185088 DOI: 10.1016/j.jhazmat.2024.133424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heavy metal pollution poses a major threat to human health, and developing a user-deliverable heavy metal detection strategy remains a major challenge. In this work, two-mode Hg2+ sensing platforms based on the tunable cobalt metal-organic framework (Co-MOF) active site strategy are constructed, including a colorimetric, and an electrochemical assay using a personal glucose meter (PGM) as the terminal device. Specifically, thymine (T), a single, adaptable nucleotide, is chosen to replace typical T-rich DNA aptamers. The catalytic sites of Co-MOF are tuned competitively by the specific binding of T-Hg2+-T, and different signal output platforms are developed based on the different enzyme-like activities of Co-MOF. DFT calculations are utilized to analyze the interaction mechanism between T and Co-MOF with defect structure. Notably, the two-mode sensing platforms exhibit outstanding detection performance, with LOD values as low as 0.5 nM (colorimetric) and 3.69 nM (PGM), respectively, superior to recently reported nanozyme-based Hg2+ sensors. In real samples of tap water and lake water, this approach demonstrates an effective recovery rate and outstanding selectivity. Surprisingly, the method is potentially versatile and, by exchanging out T-Hg2+-T, can also detect Ag+. This simple, portable, and user-friendly Hg2+ detection approach shows plenty of promise for application in the future.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
5
|
Feng Z, Lim HN, Ibrahim I, Gowthaman NSK. A review of zeolitic imidazolate frameworks (ZIFs) as electrochemical sensors for important small biomolecules in human body fluids. J Mater Chem B 2023; 11:9099-9127. [PMID: 37650588 DOI: 10.1039/d3tb01221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Small biomolecules play a critical role in the fundamental processes that sustain life and are essential for the proper functioning of the human body. The detection of small biomolecules has garnered significant interest in various fields, including disease diagnosis and medicine. Electrochemical techniques are commonly employed in the detection of critical biomolecules through the principle of redox reactions. It is also a very convenient, cheap, simple, fast, and accurate measurement method in analytical chemistry. Zeolitic imidazolate frameworks (ZIFs) are a unique type of metal-organic framework (MOF) composed of porous crystals with extended three-dimensional structures. These frameworks are made up of metal ions and imidazolate linkers, which form a highly porous and stable structure. In addition to their many advantages in other applications, ZIFs have emerged as promising candidates for electrochemical sensors. Their large surface area, pore diameter, and stability make them ideal for use in sensing applications, particularly in the detection of small molecules and ions. This review summarizes the critical role of small biomolecules in the human body, the standard features of electrochemical analysis, and the utilization of various types of ZIF materials (including carbon composites, metal-based composites, ZIF polymer materials, and ZIF-derived materials) for the detection of important small biomolecules in human body fluids. Lastly, we provide an overview of the current status, challenges, and future outlook for research on ZIF materials.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - H N Lim
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - I Ibrahim
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
6
|
Xiao L, Yang K, Duan J, Zheng S, Jiang J. The nickel phosphate rods derived from Ni-MOF with enhanced electrochemical activity for non-enzymatic glucose sensing. Talanta 2022; 247:123587. [DOI: 10.1016/j.talanta.2022.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
7
|
A novel ZIF-8@ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Zn2+ induced self-assembled fabrication of marigold-like ZnO microflower@Ni(OH)2 three-dimensional nanosheets for nonenzymatic glucose sensing. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Xiao L, Zheng S, Yang K, Duan J, Jiang J. The construction of CoP nanoparticles coated with carbon layers derived from core-shell bimetallic MOF for electrochemical detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Wang Q, Wang Z, Dong Q, Yu R, Zhu H, Zou Z, Yu H, Huang K, Jiang X, Xiong X. NiCl(OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Chen C, Xiong D, Gu M, Lu C, Yi FY, Ma X. MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35365-35374. [PMID: 32657131 DOI: 10.1021/acsami.0c09689] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The fabrication of two-dimensional (2D) metal-organic frameworks (MOFs) and Prussian blue analogues (PBAs) combines the advantages of 2D materials, MOFs and PBAs, resolving the poor electronic conductivity and slow diffusion of MOF materials for electrochemical applications. In this work, 2D leaflike zeolitic imidazolate frameworks (Co-ZIF and Fe-ZIF) as sacrificial templates are in situ converted into PBAs, realizing the successful fabrication of PBA/ZIF nanocomposites on nickel foam (NF), namely, CoCo-PBA/Co-ZIF/NF, FeFe-PBA/Fe-ZIF/NF, CoFe-PBA/Co-ZIF/NF, and Fe/CoCo-PBA/Co-ZIF/NF. Such fabrication can effectively reduce transfer resistance and greatly enhance electron- and mass-transfer efficiency due to the electrochemically active PBA particles and NF substrate. These fabricated electrodes as multifunctional sensors achieve highly selective and sensitive glucose and H2O2 biosensing with a very wide detective linear range, extremely low limit of detection (LOD), and good stability. Among them, CoFe-PBA/Co-ZIF/NF exhibits the best sensing performance with a very wide linear range from 1.4 μM to 1.5 mM, a high sensitivity of 5270 μA mM-1 cm-2, a low LOD of 0.02 μM (S/N = 3), and remarkable stability and selectivity toward glucose. What is more, it can realize excellent detection of glucose in human serum, demonstrating its practical applications. Furthermore, this material as a multifunctional electrochemical sensor also manifests superior detection performance against hydrogen peroxide with a wide linear range of 0.2-6.0 mM, a high sensitivity of 196 μA mM-1 cm-2, and a low limit of detection of 1.08 nM (S/N = 3). The sensing mechanism for enhanced performance for glucose and H2O2 is discussed and proved by experiments in detail.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Minli Gu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Department of Chemistry & Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
13
|
Xiao L, Jia L, Zhao S, Tang X, Zhu C, Huang H, Jiang J, Li M. Solvent-free synthesis of sheet-like carbon coated MnO with three-dimensional porous structure for simultaneous detection of dopamine and uric acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113783] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Li Z, Lian X, Wu M, Zheng F, Gao Y, Niu H. A novel self-assembled-derived 1D MnO2@Co3O4 composite as a high-performance Li-ion storage anode material. Dalton Trans 2020; 49:6644-6650. [DOI: 10.1039/d0dt00980f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese dioxide (MnO2) is a high-performance anodic material and applied widely in lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Zongtang Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion
- College of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230039
| | - Xiao Lian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion
- College of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230039
| | - Mingzai Wu
- School of Physics and Materials Science
- Anhui University
- Hefei 230039
- China
| | - Fangcai Zheng
- Institutes of Physical Science and information Technology
- Anhui University
- Hefei 230039
- China
| | - Yuanhao Gao
- Key Lab Micronano Mat Energy Storage
- Xuchang University
- Xuchang 461000
- China
| | - Helin Niu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion
- College of Chemistry and Chemical Engineering
- Anhui University
- Hefei 230039
| |
Collapse
|
16
|
|