1
|
Zhou G, Xu Y, Zhang X, Sun Y, Wang C, Yu P. Efficient Activation of Peroxymonosulfate by Cobalt Supported Used Resin Based Carbon Ball Catalyst for the Degradation of Ibuprofen. MATERIALS 2022; 15:ma15145003. [PMID: 35888470 PMCID: PMC9321845 DOI: 10.3390/ma15145003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022]
Abstract
The extensive use of ibuprofen (IBU) and other pharmaceuticals and personal care products (PPCPs) causes them widely to exist in nature and be frequently detected in water bodies. Advanced catalytic oxidation processes (AOPs) are often used as an efficient way to degrade them, and the research on heterogeneous catalysts has become a hot spot in the field of AOPs. Among transitional metal-based catalysts, metal cobalt has been proved to be an effective element in activating peroxymonosulfate (PMS) to produce strong oxidizing components. In this study, the used D001 resin served as the matrix material and through simple impregnation and calcination, cobalt was successfully fixed on the carbon ball in the form of cobalt sulfide. When the catalyst was used to activate persulfate to degrade IBU, it was found that under certain reaction conditions, the degradation rate in one hour could exceed 70%, which was far higher than that of PMS and resin carbon balls alone. Here, we discussed the effects of catalyst loading, PMS concentration, pH value and temperature on IBU degradation. Through quenching experiments, it was found that SO4− and ·OH played a major role in the degradation process. The material has the advantages of simple preparation, low cost and convenient recovery, as well as realizing the purpose of reuse and degrading organic pollutants efficiently.
Collapse
Affiliation(s)
- Guangzhen Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (G.Z.); (Y.X.); (X.Z.); (P.Y.)
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (G.Z.); (Y.X.); (X.Z.); (P.Y.)
| | - Xiao Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (G.Z.); (Y.X.); (X.Z.); (P.Y.)
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China;
| | - Cheng Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (G.Z.); (Y.X.); (X.Z.); (P.Y.)
- Correspondence:
| | - Peng Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (G.Z.); (Y.X.); (X.Z.); (P.Y.)
| |
Collapse
|
2
|
Enhanced photocatalytic activities of CeO2@ZnO core-shell nanostar particles through delayed electron hole recombination process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Facile synthesis of Pr-doped Co3O4 nanoflakes on the nickel-foam for high performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Wang XL, Jin EM, Chen J, Bandyopadhyay P, Jin B, Jeong SM. Facile In Situ Synthesis of Co(OH) 2-Ni 3S 2 Nanowires on Ni Foam for Use in High-Energy-Density Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:34. [PMID: 35009986 PMCID: PMC8746589 DOI: 10.3390/nano12010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/16/2022]
Abstract
Ni3S2 nanowires were synthesized in situ using a one-pot hydrothermal reaction on Ni foam (NF) for use in supercapacitors as a positive electrode, and various contents (0.3-0.6 mmol) of Co(OH)2 shells were coated onto the surfaces of the Ni3S2 nanowire cores to improve the electrochemical properties. The Ni3S2 nanowires were uniformly formed on the smooth NF surface, and the Co(OH)2 shell was formed on the Ni3S2 nanowire surface. By direct NF participation as a reactant without adding any other Ni source, Ni3S2 was formed more closely to the NF surface, and the Co(OH)2 shell suppressed the loss of active material during charging-discharging, yielding excellent electrochemical properties. The Co(OH)2-Ni3S2/Ni electrode produced using 0.5 mmol Co(OH)2 (Co0.5-Ni3S2/Ni) exhibited a high specific capacitance of 1837 F g-1 (16.07 F cm-2) at a current density of 5 mA cm-2, and maintained a capacitance of 583 F g-1 (16.07 F cm-2) at a much higher current density of 50 mA cm-2. An asymmetric supercapacitor (ASC) with Co(OH)2-Ni3S2 and active carbon displayed a high-power density of 1036 kW kg-1 at an energy density of 43 W h kg-1 with good cycling stability, indicating its suitability for use in energy storage applications. Thus, the newly developed core-shell structure, Co(OH)2-Ni3S2, was shown to be efficient at improving the electrochemical performance.
Collapse
Affiliation(s)
- Xuan Liang Wang
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - En Mei Jin
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Jiasheng Chen
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Parthasarathi Bandyopadhyay
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Chungbuk, Korea; (X.L.W.); (E.M.J.); (J.C.); (P.B.)
| |
Collapse
|
5
|
Sun Y, Zhang J, Liu S, Sun X, Huang N. An enhancement on supercapacitor properties of porous CoO nanowire arrays by microwave-assisted regulation of the precursor. NANOTECHNOLOGY 2021; 32:195707. [PMID: 33530071 DOI: 10.1088/1361-6528/abe264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A microwave-assisted hydrothermal approach with a follow up thermal treatment was employed to prepare 1D porous CoO nanowires, which is constructed by numerous high crystallinity nanoparticles. A significant change in crystal structure of the precursor were observed, as position shift and absence of some diffraction peaks, which was induced by the microwave-assistance during hydrothermal process. Moreover, the precursor's purity was also effectively improved. As a result, the as-synthesized CoO annealed from the microwave-assisted precursor exhibited a morphology and phase structure significantly different from that of without microwave involvement. Benefiting from the 'microwave effect', the microwave-assisted as-fabricated porous CoO nanowires showed an enhanced specific capacitance (728.8 versus 503.7 F g-1 at 1 A g-1 ), strengthened rate performance (70.0% versus 53.2% maintenance at 15 A g-1), reduced charge transfer resistance (1.06 Ω versus 2.39 Ω), enlarged window voltage (0.85 versus 0.7 V) and enhanced cycle performance (82.3% versus 76.5% retention after 5000 cycles at 15 A g-1), compared with that of sample without microwave assistance. In addition, the corresponding electrochemical properties are also higher than those reported CoO sample prepared by solvothermal method. In conclusion, this work provides a practical way for enhancing electrochemical properties of supercapacitor materials through adjusting the precursor by microwave assistance into hydrothermal process.
Collapse
Affiliation(s)
- Yin Sun
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Junjie Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Sen Liu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Xiannian Sun
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Naibao Huang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| |
Collapse
|
6
|
Self-Supported Sheets-on-Wire CuO@Ni(OH)2/Zn(OH)2 Nanoarrays for High-Performance Flexible Quasi-Solid-State Supercapacitor. Processes (Basel) 2021. [DOI: 10.3390/pr9040680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transition metal hydroxides have attracted a lot of attention as the electrode materials for supercapacitors owing to their relatively high theoretical capacity, low cost, and facile preparation methods. However, their low intrinsic conductivity deteriorates their high-rate performance and cycling stability. Here, self-supported sheets-on-wire CuO@Ni(OH)2/Zn(OH)2 (CuO@NiZn) composite nanowire arrays were successfully grown on copper foam. The CuO nanowire backbone provided enhanced structural stability and a highly efficient electron-conducting pathway from the active hydroxide nanosheets to the current collector. The resulting CuO@NiZn as the battery-type electrode for supercapacitor application delivered a high capacity of 306.2 mAh g−1 at a current density of 0.8 A g−1 and a very stable capacity of 195.1 mAh g−1 at 4 A g−1 for 10,000 charge–discharge cycles. Furthermore, a quasi-solid-state hybrid supercapacitor (qss HSC) was assembled with active carbon, exhibiting 125.3 mAh g−1 at 0.8 A g−1 and a capacity of 41.6 mAh g−1 at 4 A g−1 for 5000 charge–discharge cycles. Furthermore, the qss HSC was able to deliver a high energy density of about 116.0 Wh kg−1. Even at the highest power density of 7.8 kW kg−1, an energy density of 20.5 Wh kg−1 could still be obtained. Finally, 14 red light-emitting diodes were lit up by a single qss HSC at different bending states, showing good potential for flexible energy storage applications.
Collapse
|
7
|
Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor. J Colloid Interface Sci 2021; 590:114-124. [PMID: 33524711 DOI: 10.1016/j.jcis.2021.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
The intrinsic faradic reactivity is the uppermost factor determining the charge storage capability of battery material, the construction of p-n junction composing of different faradic components is a rational tactics to enhance the faradic activity. Herein, a reduced graphene oxide@cobalt nickle sulfide@nickle cobalt layered double hydroxide composite (rGO@CoNi2S4@NiCo LDH) with p-n junction structure is designed by deposition of n-type nickle cobalt layered double hydroxide (NiCo LDH) around p-type reduced graphene oxide@cobalt nickle sulfide (rGO@CoNi2S4), the charge redistribution across the p-n junction enables enhanced faradic activities of both components and further the overall charge storage capacity of the resultant rGO@CoNi2S4@NiCo LDH battery electrode. As expected, the rGO@CoNi2S4@NiCo LDH electrode can deliver high specific capacity (Cs, 1310 ± 26 C g-1 at 1 A g-1) and good cycleability (77% Cs maintaining ratio undergoes 5000 charge-discharge cycles). Furthermore, the hybrid supercapacitor (HSC) based on the rGO@CoNi2S4@NiCo LDH p-n junction battery electrode exports high energy density (Ecell, 57.4 Wh kg-1 at 323 W kg-1) and good durability, showing the prospect of faradic p-n junction composite in battery typed energy storage.
Collapse
|
8
|
Sajjad M, Khan Y. Rational design of self-supported Ni 3S 2 nanoparticles as a battery type electrode material for high-voltage (1.8 V) symmetric supercapacitor applications. CrystEngComm 2021. [DOI: 10.1039/d1ce00073j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We developed a high performance SSC device with excellent electrochemical performance in terms of specific capacitance, rate capability, energy density and power density which surpasses most of the reports.
Collapse
Affiliation(s)
- Muhammad Sajjad
- School of Chemical Science and Engineering
- Yunnan University
- Kunming 650091
- P. R. China
- Institute of Energy Storage Technologies
| | - Yaqoob Khan
- Nanosciences and Technology Department
- National Center for Physics
- QAU Campus
- Islamabad 45320
- Pakistan
| |
Collapse
|
9
|
Cheng L, Feng X, Wang J, Fu S, Li Z, Jiao Z. Controllable synthesis of hydrangea-like Ni xS y hollow microflower all-solid-state asymmetric supercapacitor electrodes with enhanced performance by the synergistic effect of multiphase nickel. CrystEngComm 2021. [DOI: 10.1039/d1ce00526j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, through controlling the urea content in the synthesis system, the nucleation rate of NixSy can be adjusted, and a series of NixSy with multiphase nickel and various sizes and surface morphologies can be achieved.
Collapse
Affiliation(s)
- Lingli Cheng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P.R. China
| | - Xiaoxiao Feng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P.R. China
| | - Jiaqi Wang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P.R. China
| | - Shaqi Fu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P.R. China
| | - Zhen Li
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai 201800
- PR China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai 201800
- PR China
| |
Collapse
|
10
|
Salarizadeh P, Askari MB, Hooshyari K, Saeidfirozeh H. Synergistic effect of MoS 2 and Fe 3O 4 decorated reduced graphene oxide as a ternary hybrid for high-performance and stable asymmetric supercapacitors. NANOTECHNOLOGY 2020; 31:435401. [PMID: 32610307 DOI: 10.1088/1361-6528/aba1bd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Today, two-dimensional materials for use in energy devices have attracted the attention of researchers. Molybdenum disulfide is promising as an electrode material with unique physical properties and a high exposed surface area. However, there are still problems that need to be addressed. In this study, we prepared a hybrid containing MoS2, Fe3O4, and reduced graphene oxide (rGO) by a two-step hydrothermal method. This nanocomposite is well structurally and morphologically identified, and its electrochemical performance is then evaluated for use in supercapacitors. According to the galvanostatic charge-discharge results, this nanocomposite shows a good specific capacity, equivalent to 527 F g-1 at 0.5 mA cm-2. The results of the multi-cycle stability test (5000 cycles) indicate a significant stability rate capability, with 93% of the electrode capacity remaining after 5000 cycles. The reason for this could be the synergistic effect between rGO and MoS2 as well as between molybdenum and iron in the faradic reaction in the charge storage process. Fe3O4 and MoS2 provide electroactive sites for the faradic process and electrolyte accessibility and rGO supply conductivity.
Collapse
Affiliation(s)
- Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan 1599637111, Rafsanjan, Iran
| | | | | | | |
Collapse
|
11
|
Zhang G, Xuan H, Wang R, Guan Y, Li H, Liang X, Han P, Wu Y. Enhanced supercapacitive performance in Ni3S2/MnS composites via an ion-exchange process for supercapacitor applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136517] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhang Q, Shi Q, Yang Y, Zang Q, Xiao Z, Zhang X, Wang L. 2D nanosheet/3D cubic framework Ni-Co sulfides for improved supercapacitor performance via structural engineering. Dalton Trans 2020; 49:8162-8168. [PMID: 32510091 DOI: 10.1039/d0dt01430c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The construction of multi-dimensional structured battery-type electrode materials is a promising strategy to develop high performance electrodes for supercapacitors. Herein, a series of battery-type Ni3S2@Co3S4 electrodes with different morphologies are synthesized by controlling the hydrothermal reaction time. Owing to the unique structure with independent but interconnected 2D nanosheets and 3D cubic frameworks, NCS-60 displays high conductivity, numerous active sites and good wettability behavior. It can deliver a high specific capacity of 388.9 mA h g-1 (3500 F g-1) at 1 A g-1, an outstanding rate capacity of maintaining 88.6% at 10 A g-1 and long cycle stability. The battery-type supercapacitor hybrid (BSH) device with active carbon (AC) as the negative electrode delivers an energy density of 41.8 W h kg-1 at the power density of 800 W kg-1. This study provides a feasible route for regulating the morphologies of in situ growth materials that improve the electrochemical performance of supercapacitors.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Eco-Chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu XX, He Q, Wang Y, Wang J, Xiang Y, Blackwood DJ, Wu R, Chen JS. MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Hu X, Wei L, Chen R, Wu Q, Li J. Reviews and Prospectives of Co
3
O
4
‐Based Nanomaterials for Supercapacitor Application. ChemistrySelect 2020. [DOI: 10.1002/slct.201904485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinran Hu
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Lishuang Wei
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Rui Chen
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Qingsheng Wu
- School of Chemical Science and EngineeringTongji University Shanghai 200092 P R China
| | - Jiangfeng Li
- Department of ChemistryLishui University Lishui 323000 P R China
| |
Collapse
|
15
|
Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136093] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Li Y, Wei Q, Wang R, Zhao J, Quan Z, Zhan T, Li D, Xu J, Teng H, Hou W. 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. J Colloid Interface Sci 2020; 570:286-299. [PMID: 32163790 DOI: 10.1016/j.jcis.2020.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
Three-dimensional nitrogen-doped carbon network incorporated with nickel@nickel oxide core-shell nanoparticles composite (3D NC/Ni@NiO) has been facilely prepared, self-templated by the cross-linked polyacrylamide aerogel precursor containing NiCl2. Characterizations reveal that the Ni@NiO nanoparticles distribute homogeneously in the 3D nitrogen-doped carbon matrix and the composite is of hierarchical porous structure. When used as supercapacitor electrode in a three-electrode system, the 3D NC/Ni@NiO exhibits enhanced electrical conductivity and excellent electrochemical performance, presenting a high specific capacitance (389F g-1 at 5 mV s-1), good rate capability (276 F g-1 at 100 mV s-1) and outstanding cycling performance (with the capacitance retention of 70.2% after 5000 charge-discharge cycles). This is due to the synergistic effects of conductive metallic nickel, pseudocapacitive nickel oxide as well as in situ nitrogen doping of carbon network. Moreover, an asymmetric supercapacitor (ASC) was fabricated with NC/Ni@NiO as positive electrode and active carbon as negative electrode. The ASC device exhibits a maximum energy density of 19.4 W h kg-1 at a power density of 700 W kg-1 and shows good cycling stability (73.8% capacity retention after 3000 cycles), indicating that it has great promise for practical energy storage and conversion application.
Collapse
Affiliation(s)
- Yao Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qianling Wei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Rui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jikuan Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhenlan Quan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Dongxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jie Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongni Teng
- Department of Applied Chemistry, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, PR China.
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China
| |
Collapse
|
17
|
Cui K, Fan J, Li S, Khadidja MF, Wu J, Wang M, Lai J, Jin H, Luo W, Chao Z. Three dimensional Ni 3S 2 nanorod arrays as multifunctional electrodes for electrochemical energy storage and conversion applications. NANOSCALE ADVANCES 2020; 2:478-488. [PMID: 36133976 PMCID: PMC9417280 DOI: 10.1039/c9na00633h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 05/17/2023]
Abstract
The increasing demand for energy and environmental protection has stimulated intensive interest in fundamental research and practical applications. Nickel dichalcogenides (Ni3S2, NiS, Ni3Se2, NiSe, etc.) are promising materials for high-performance electrochemical energy storage and conversion applications. Herein, 3D Ni3S2 nanorod arrays are fabricated on Ni foam by a facile solvothermal route. The optimized Ni3S2/Ni foam electrode displays an areal capacity of 1602 µA h cm-2 at 5 mA cm-2, excellent rate capability and cycling stability. Besides, 3D Ni3S2 nanorod arrays as electrode materials exhibit outstanding performances for the overall water splitting reaction. In particular, the 3D Ni3S2 nanorod array electrode is shown to be a high-performance water electrolyzer with a cell voltage of 1.63 V at a current density of 10 mA cm-2 for overall water splitting. Therefore, the results demonstrate a promising multifunctional 3D electrode material for electrochemical energy storage and conversion applications.
Collapse
Affiliation(s)
- Kexin Cui
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Jincheng Fan
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Songyang Li
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Moukaila Fatiya Khadidja
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Jianghong Wu
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen Guangdong 518118 China
| | - Mingyu Wang
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Jianxin Lai
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Hongguang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Wenbin Luo
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Zisheng Chao
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| |
Collapse
|
18
|
Chen Y, Ma Q, Li Z, Cui F, Xu L, Zhang J, Chai Z, Ma W, Cui T. An autocatalytic route of CuO/Co 3O 4@SiO 2 nanocapsules as excellent performance supercapacitor materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj02356f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocapsules prepared with silica as a carrier and coated with Co3O4 and CuO nanoparticles are used for high-performance supercapacitors.
Collapse
Affiliation(s)
- Yu Chen
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Qinghai Ma
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Zhenhui Li
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Fang Cui
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Linxu Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Jiajia Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Zhiyi Chai
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Wenlu Ma
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Tieyu Cui
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
19
|
Zhang L, Li R, Li W, Li R, Li C, Zhou Y. CuCo2O4 nanoneedle array with high stability for high performance asymmetric supercapacitors. RSC Adv 2020; 10:22775-22782. [PMID: 35514599 PMCID: PMC9054572 DOI: 10.1039/d0ra03771k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023] Open
Abstract
Cycling performance is very important to device application. Herein, a facile and controllable approach is proposed to synthesize high stability CuCo2O4 nanoneedle array on a conductive substrate. The electrode presents excellent performances in a large specific capacitance up to 2.62 F cm−2 (1747 F g−1) at 1 mV s−1 and remarkable electrochemical stability, retaining 164% even over 70 000 cycles. In addition, the asymmetric supercapacitor assembled with the optimized CuCo2O4 nanoneedle array (cathode) and active carbon (anode), which exhibits superior specific capacity (146 F g−1), energy density (57 W h kg−1), and cycling stability (retention of 83.9% after 10 000 cycles). These outstanding performances are mainly ascribed to the ordered binder-free nanoneedle array architecture and holds great potential for the new-generation energy storage devices. The CuCo2O4 nanoneedle array with enhanced electrochemical performance especially high stability is due to the hierarchical porosity framework with the high mesoporous nanoneedle array.![]()
Collapse
Affiliation(s)
- Ling Zhang
- The State Key Laboratory of Refractories and Metallurgy
- Institute of Advanced Materials and Nanotechnology
- College of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
| | - Ruizhi Li
- The State Key Laboratory of Refractories and Metallurgy
- Institute of Advanced Materials and Nanotechnology
- College of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
| | - Weiqun Li
- The State Key Laboratory of Refractories and Metallurgy
- Institute of Advanced Materials and Nanotechnology
- College of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
| | - Rongcong Li
- The State Key Laboratory of Refractories and Metallurgy
- Institute of Advanced Materials and Nanotechnology
- College of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
| | - Chenliang Li
- The State Key Laboratory of Refractories and Metallurgy
- Institute of Advanced Materials and Nanotechnology
- College of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
| | - Yingke Zhou
- The State Key Laboratory of Refractories and Metallurgy
- Institute of Advanced Materials and Nanotechnology
- College of Materials and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
| |
Collapse
|
20
|
He Q, Liu XX, Wu R, Chen JS. PVP-Assisted Synthesis of Self-Supported Ni 2P@Carbon for High-Performance Supercapacitor. RESEARCH 2019; 2019:8013285. [PMID: 31912046 PMCID: PMC6944484 DOI: 10.34133/2019/8013285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 11/17/2022]
Abstract
Highly conductive and stable electrode materials are usually the focus of high-performance supercapacitors. In this work, a unique design of Ni2P@carbon self-supported composite nanowires directly grown on Ni foam was applied for a supercapacitor. The Co3O4 nanowire array was first synthesized on the Ni foam substrate, and the resulting Ni2P@carbon nanocomposite was obtained by hydrothermally coating Co3O4 with the Ni-ethylene glycol complex followed by gaseous phosphorization. We have discovered that the molecular weight of surfactant polyvinylpyrrolidone (PVP) used in the hydrothermal step, as well as the temperature for phosphorization, played very important roles in determining the electrochemical properties of the samples. Specifically, the sample synthesized using PVP with 10 k molecular weight and phosphorized at 300°C demonstrated the best supercapacitive performance among the different samples, with the highest capacitance and most stable cyclic retention. When an asymmetric supercapacitor (ASC) was assembled with this Ni2P@carbon sample as the cathode and activated carbon (AC) as the anode, the ASC device showed excellent capacitances of 3.7 and 1.6 F cm−2 at 2 and 50 mA cm−2, respectively, and it kept a high capacitance of 1.2 F cm−2 after 5000 cycles at a current rate of 25 mA cm−2. In addition, the ASC could reach a high energy density of about 122.8 Wh kg−1 at a power density of 0.15 kW kg−1 and 53.3 Wh kg−1 at the highest power density of 3.78 kW kg−1. Additionally, this device also had the ability to power up 16 red LEDs effortlessly, making it a strong candidate in electrochemical energy storage for practical usage.
Collapse
Affiliation(s)
- Qian He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiong Xiong Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Rui Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.,Center for Applied Chemistry, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave. West Hi-Tech Zone, Chengdu, China
| |
Collapse
|