1
|
Wang B, Liu K, Wei G, He A, Kong W, Zhang X. A Review of Advanced Sensor Technologies for Aquatic Products Freshness Assessment in Cold Chain Logistics. BIOSENSORS 2024; 14:468. [PMID: 39451681 PMCID: PMC11506179 DOI: 10.3390/bios14100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
The evaluation of the upkeep and freshness of aquatic products within the cold chain is crucial due to their perishable nature, which can significantly impact both quality and safety. Conventional methods for assessing freshness in the cold chain have inherent limitations regarding specificity and accuracy, often requiring substantial time and effort. Recently, advanced sensor technologies have been developed for freshness assessment, enabling real-time and non-invasive monitoring via the detection of volatile organic compounds, biochemical markers, and physical properties. The integration of sensor technologies into cold chain logistics enhances the ability to maintain the quality and safety of aquatic products. This review examines the advancements made in multifunctional sensor devices for the freshness assessment of aquatic products in cold chain logistics, as well as the application of pattern recognition algorithms for identification and classification. It begins by outlining the categories of freshness criteria, followed by an exploration of the development of four key sensor devices: electronic noses, electronic tongues, biosensors, and flexible sensors. Furthermore, the review discusses the implementation of advanced pattern recognition algorithms in sensor devices for freshness detection and evaluation. It highlights the current status and future potential of sensor technologies for aquatic products within the cold chain, while also addressing the significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Baichuan Wang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Kang Liu
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| | - Guangfen Wei
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.); or (A.H.)
| | - Aixiang He
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.); or (A.H.)
| | - Weifu Kong
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Xiaoshuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| |
Collapse
|
2
|
Das S, Raj R, Das S, Ghangrekar MM. Evaluating application of photosynthetic microbial fuel cell to exhibit efficient carbon sequestration with concomitant value-added product recovery from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98995-99012. [PMID: 35661302 DOI: 10.1007/s11356-022-21184-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The emission of CO2 from industrial (24%) and different anthropogenic activities, like transportation (27%), electricity production (25%), and agriculture (11%), can lead to global warming, which in the long term can trigger substantial climate changes. In this regard, CO2 sequestration and wastewater treatment in tandem with bioenergy production through photosynthetic microbial fuel cell (PMFC) is an economical and sustainable intervention to address the problem of global warming and elevating energy demands. Therefore, this review focuses on the application of different PMFC as a bio-refinery approach to produce biofuels and power generation accompanied with the holistic treatment of wastewater. Moreover, CO2 bio-fixation and electron transfer mechanism of different photosynthetic microbiota, and factors affecting the performance of PMFC with technical feasibility and drawbacks are also elucidated in this review. Also, low-cost approaches such as utilization of bio-membrane like coconut shell, microbial growth enhancement by extracellular cell signalling mechanisms, and exploitation of genetically engineered strain towards the commercialization of PMFC are highlighted. Thus, the present review intends to guide the budding researchers in developing more cost-effective and sustainable PMFCs, which could lead towards the commercialization of this inventive technology.
Collapse
Affiliation(s)
- Swati Das
- PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- PK Sinha Centre for Bioenergy & Renewables, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Adekunle A, Bambace S, Tanguay-Rioux F, Tartakovsky B. Microbial Fuel Cell Biosensor with Capillary Carbon Source Delivery for Real-Time Toxicity Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:7065. [PMID: 37631603 PMCID: PMC10458999 DOI: 10.3390/s23167065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
A microbial fuel cell (MFC) biosensor with an anode as a sensing element is often unreliable at low or significantly fluctuating organic matter concentrations. To remove this limitation, this work demonstrates capillary action-aided carbon source delivery to an anode-sensing MFC biosensor for use in carbon-depleted environments, e.g., potable water. First, different carbon source delivery configurations using several thread types, silk, nylon, cotton, and polyester, are evaluated. Silk thread was determined to be the most suitable material for passive delivery of a 40 g L-1 acetate solution. This carbon source delivery system was then incorporated into the design of an MFC biosensor for real-time detection of toxicity spikes in tap water, providing an organic matter concentration of 56 ± 15 mg L-1. The biosensor was subsequently able to detect spikes of toxicants such as chlorine, formaldehyde, mercury, and cyanobacterial microcystins. The 16S sequencing results demonstrated the proliferation of Desulfatirhabdium (10.7% of the total population), Pelobacter (10.3%), and Geobacter (10.2%) genera. Overall, this work shows that the proposed approach can be used to achieve real-time toxicant detection by MFC biosensors in carbon-depleted environments.
Collapse
Affiliation(s)
- Ademola Adekunle
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Stefano Bambace
- Faculty of Engineering, McGill University, 3480 Rue University #350, Montreal, QC H3A 0E9, Canada
| | - Fabrice Tanguay-Rioux
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Boris Tartakovsky
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
4
|
Ge-Zhang S, Cai T, Song M. Life in biophotovoltaics systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1151131. [PMID: 37615025 PMCID: PMC10444202 DOI: 10.3389/fpls.2023.1151131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
As the most suitable potential clean energy power generation technology, biophotovoltaics (BPV) not only inherits the advantages of traditional photovoltaics, such as safety, reliability and no noise, but also solves the disadvantages of high pollution and high energy consumption in the manufacturing process, providing new functions of self-repair and natural degradation. The basic idea of BPV is to collect light energy and generate electric energy by using photosynthetic autotrophs or their parts, and the core is how these biological materials can quickly and low-loss transfer electrons to the anode through mediators after absorbing light energy and generating electrons. In this mini-review, we summarized the biological materials widely used in BPV at present, mainly cyanobacteria, green algae, biological combinations (using multiple microorganisms in the same BPV system) and isolated products (purified thylakoids, chloroplasts, photosystem I, photosystem II), introduced how researchers overcome the shortcomings of low photocurrent output of BPV, pointed out the limitations that affected the development of BPV' biological materials, and put forward reasonable assumptions accordingly.
Collapse
Affiliation(s)
| | - Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin, China
| | - Mingbo Song
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Tay ZHY, Ng FL, Ling TC, Iwamoto M, Phang SM. The use of marine microalgae in microbial fuel cells, photosynthetic microbial fuel cells and biophotovoltaic platforms for bioelectricity generation. 3 Biotech 2022; 12:148. [PMID: 35733833 DOI: 10.1007/s13205-022-03214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022] Open
Abstract
Algal green energy has emerged as an alternative to conventional energy production using fossil fuels. Microbial fuel cells (MFCs), photosynthetic microbial fuel cells (PMFCs) and biophotovoltaic (BPV) platforms have been developed to utilize microalgae for bioelectricity generation, wastewater treatment and biomass production. There remains a lack of research on marine microalgae in these systems, so to the best of our knowledge, all information on their integration in these systems have been gathered in this review, and are used to compare with the interesting studies on freshwater microalgae. The performance of the systems is extremely reliant on the microalgae species and/or microbial community used, the size of the bio-electrochemical cell, and electrode material and distance used. The mean was calculated for each system, PMFC has the highest average maximum power density of 344 mW/m2, followed by MFC (179 mW/m2) and BPV (58.9 mW/m2). In addition, the advantages and disadvantages of each system are highlighted. Although all three systems face the issue of low power outputs, the integration of a suitable energy harvester could potentially increase power efficiency and make them applicable for lower power applications.
Collapse
Affiliation(s)
- Zoe Hui-Yee Tay
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fong-Lee Ng
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia.,Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tau-Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mitsumasa Iwamoto
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan.,Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Huang S, Shen M, Ren ZJ, Wu H, Yang H, Si B, Lin J, Liu Z. Long-term in situ bioelectrochemical monitoring of biohythane process: Metabolic interactions and microbial evolution. BIORESOURCE TECHNOLOGY 2021; 332:125119. [PMID: 33848821 DOI: 10.1016/j.biortech.2021.125119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Microbial stability and evolution are a critical aspect for biosensors, especially in detecting dynamic and emerging anaerobic biohythane production. In this study, two upflow air-cathode chamber microbial fuel cells (UMFCs) were developed for in situ monitoring of the biohydrogen and biomethane reactors under a COD range of 1000-6000 mg/L and 150-1000 mg/L, respectively. Illumina MiSeq sequencing evidenced the dramatic shift of dominant microbial communities in UMFCs from hydrolytic and acidification bacteria (Clostridiaceae_1, Ruminococcaceae, Peptostreptococcaceae) to acetate-oxidizing bacteria (Synergistaceae, Dysgonomonadaceae, Spirochaetaceae). In addition, exoelectroactive bacteria evaluated from Enterobacteriaceae and Burkholderiaceae to Desulfovibrionaceae and Propionibacteriaceae. Especially, Hydrogenotrophic methanogens (Methanobacteriaceae) were abundant at 93.41% in UMFC (for monitoring hydrogen reactor), which was speculated to be a major metabolic pathway for methane production. Principal component analysis revealed a similarity in microbial structure between UMFCs and methane bioreactors. Microbial network analysis suggested a more stable community structure of UMFCs with 205 days' operation.
Collapse
Affiliation(s)
- Sijie Huang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Mengmeng Shen
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States
| | - Houkai Wu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Hao Yang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021; 121:11835-11885. [DOI: 10.1021/acs.chemrev.0c01335] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey 34220
| | - Cody S. Carrell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeremy S. Link
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Catherine McMahon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea 04763
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Roxby DN, Rivy H, Gong C, Gong X, Yuan Z, Chang GE, Chen YC. Microalgae living sensor for metal ion detection with nanocavity-enhanced photoelectrochemistry. Biosens Bioelectron 2020; 165:112420. [DOI: 10.1016/j.bios.2020.112420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
|
10
|
Grattieri M, Beaver K, Gaffney EM, Dong F, Minteer SD. Advancing the fundamental understanding and practical applications of photo-bioelectrocatalysis. Chem Commun (Camb) 2020; 56:8553-8568. [PMID: 32578607 DOI: 10.1039/d0cc02672g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo-bioelectrocatalysis combines the natural and highly sophisticated process of photosynthesis in biological entities with an abiotic electrode surface, to perform semi-artificial photosynthesis. However, challenges must be overcome, from the establishment and understanding of the photoexcited electron harvesting process at the electrode to the electrochemical characterization of these biotic/abiotic systems, and their subsequent tuning for enhancing energy generation (chemical and/or electrical). This Feature Article discusses the various approaches utilized to tackle these challenges, particularly focusing on powerful multi-disciplinary approaches for understanding and improving photo-bioelectrocatalysis. Among them is the combination of experimental evidence and quantum mechanical calculations, the use of bioinformatics to understand photo-bioelectrocatalysis at a metabolic level, or bioengineering to improve and facilitate photo-bioelectrocatalysis. Key aspects for the future development of photo-bioelectrocatalysis are presented alongside future research needs and promising applications of semi-artificial photosynthesis.
Collapse
Affiliation(s)
- Matteo Grattieri
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
11
|
Cho JH, Gao Y, Ryu J, Choi S. Portable, Disposable, Paper-Based Microbial Fuel Cell Sensor Utilizing Freeze-Dried Bacteria for In Situ Water Quality Monitoring. ACS OMEGA 2020; 5:13940-13947. [PMID: 32566860 PMCID: PMC7301539 DOI: 10.1021/acsomega.0c01333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Water quality monitoring is becoming an essential part of our lives as increasing human activities continue to spill unknown and unexpected contaminants into our water systems. To ensure the provision of safe and clean water to the public and the ecosystem, the development of rapid and sensitive in situ early warning systems for water toxicity monitoring is crucial. In this work, an entirely paper-based microbial fuel cell sensor utilizing freeze-dried bacteria is demonstrated as a portable and disposable water toxicity sensor. The bacterial cells were preinoculated on the anode reservoir of the device, and they were freeze-dried, making their on-site and on-demand applications possible. Upon rehydration of the bacteria with the water samples, current readings were obtained, and inhibition ratios (IRs) were calculated for different concentrations of formaldehyde as a model toxin. For 0.001, 0.01, and 0.02% of formaldehyde, IRs of 7.88, 16.08, and 23.14% were obtained, respectively. These IRs showed a very good linearity with the formaldehyde concentrations at R 2 = 0.995. Additionally, the shelf life of the freeze-dried microbial fuel cell sensor was investigated. Even after 14 days of storage in the desiccator, at 4, and at -20 °C, the performance outputs compared to the new device were all at 96%.
Collapse
|
12
|
Lazzarini Behrmann IC, Grattieri M, Minteer SD, Ramirez SA, Vullo DL. Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. Anal Bioanal Chem 2020; 412:6449-6457. [DOI: 10.1007/s00216-020-02620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
|
13
|
Grattieri M, Patterson S, Copeland J, Klunder K, Minteer SD. Purple Bacteria and 3D Redox Hydrogels for Bioinspired Photo-bioelectrocatalysis. CHEMSUSCHEM 2020; 13:230-237. [PMID: 31600418 DOI: 10.1002/cssc.201902116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
A major challenge for the implementation of intact bacterial cells in photo-bioelectrochemical systems remains the hindered extracellular electron transfer. This study focuses on purple bacteria, photosynthetic microorganisms particularly interesting for the development of bioelectrochemical systems because of their versatile metabolisms. Although soluble monomeric redox mediators have been proven as effective systems for electron transfer mediation, their application in the field is not preferable owing to their toxicity and unwanted release into the environment. An abiotic/biotic photoanode is reported in which a bioinspired redox mediating system is implemented in a 3D geometry allowing to "electrically wire" intact bacterial cells. The 3D photoanode decreased the overpotential required for harvesting photoexcited electrons, operating at +0.073 V versus the saturated calomel electrode (SCE). Accordingly, the overpotential was significantly reduced compared with a pioneering Os-redox polymer reported in literature, which required operation at +0.303 V versus SCE. These results provide the basis for further development of bio-photoanodes for light-powered biosensing and power generation.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| | - Sarai Patterson
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| | - Jeffrey Copeland
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| | - Kevin Klunder
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
14
|
Grattieri M. Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochem Photobiol Sci 2020; 19:424-435. [DOI: 10.1039/c9pp00470j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perspective of research directions exploring purple bacteria photo-bioelectrochemistry: from harvesting photoexcited electrons to bioelectrochemical systems development.
Collapse
|
15
|
Cho JH, Gao Y, Choi S. A Portable, Single-Use, Paper-Based Microbial Fuel Cell Sensor for Rapid, On-Site Water Quality Monitoring. SENSORS 2019; 19:s19245452. [PMID: 31835692 PMCID: PMC6960574 DOI: 10.3390/s19245452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
Abstract
Human access to safe water has become a major problem in many parts of the world as increasing human activities continue to spill contaminants into our water systems. To guarantee the protection of the public as well as the environment, a rapid and sensitive way to detect contaminants is required. In this work, a paper-based microbial fuel cell was developed to act as a portable, single-use, on-site water quality sensor. The sensor was fabricated by combining two layers of paper for a simple, low-cost, and disposable design. To facilitate the use of the sensor for on-site applications, the bacterial cells were pre-inoculated onto the device by air-drying. To eliminate any variations, the voltage generated by the microorganism before and after the air-drying process was measured and calculated as an inhibition ratio. Upon the addition of different formaldehyde concentrations (0%, 0.001%, 0.005%, and 0.02%), the inhibition ratios obtained were 5.9 ± 0.7%, 6.9 ± 0.7%, 8.2 ± 0.6%, and 10.6 ± 0.2%, respectively. The inhibition ratio showed a good linearity with the formaldehyde concentrations at R2 = 0.931. Our new sensor holds great promise in monitoring water quality as a portable, low-cost, and on-site sensor.
Collapse
|
16
|
Tucci M, Bombelli P, Howe CJ, Vignolini S, Bocchi S, Schievano A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019; 7:E630. [PMID: 31795453 PMCID: PMC6956157 DOI: 10.3390/microorganisms7120630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium Synechocystis PCC6803 wt. for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators. The inhibitory effect on photocurrent of three commonly used herbicides (i.e., atrazine, diuron, and paraquat) was used as a means of measuring their concentrations in aqueous solution. The injection of atrazine and diuron into the algal medium caused an immediate photocurrent drop due to the inhibition of photosynthetic electron transport. The detected concentrations were suitable for environmental analysis, as revealed by a comparison with the freshwater quality benchmarks set by the Environmental Protection Agency of the United States (US EPA). In contrast, paraquat caused an initial increase (~2 h) of the photocurrent effect of about 200%, as this compound can act as a redox mediator between the cells and the anode. A relatively long-term stability of the biosensor was demonstrated, by keeping anodes colonized with cyanobacterial biofilm in the dark at 4 °C. After 22 days of storage, the performance in terms of the photocurrent was comparable with the freshly prepared biosensor. This result was confirmed by the measurement of chlorophyll content, which demonstrated preservation of the cyanobacterial biofilm. The capacity of this biosensor to recover after a cold season or other prolonged environmental stresses could be a key advantage in field applications, such as in water bodies and agriculture. This study is a step forward in the biotechnological development and implementation of storable mediatorless electrochemical biosensors for herbicide detection.
Collapse
Affiliation(s)
- Matteo Tucci
- e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20,133 Milan, Italy; (M.T.); (A.S.)
| | - Paolo Bombelli
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20,133 Milano, Italy;
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK;
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK;
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Stefano Bocchi
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20,133 Milano, Italy;
| | - Andrea Schievano
- e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20,133 Milan, Italy; (M.T.); (A.S.)
| |
Collapse
|
17
|
Hossain SMZ, Mansour N. Biosensors for on-line water quality monitoring – a review. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1691434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- S. M. Zakir Hossain
- Department of Chemical Engineering, University of Bahrain, Isa Town, Kingdom of Bahrain
| | - Noureddine Mansour
- Department of Chemical Engineering, University of Bahrain, Isa Town, Kingdom of Bahrain
| |
Collapse
|
18
|
Antonacci A, Scognamiglio V. Biotechnological Advances in the Design of Algae-Based Biosensors. Trends Biotechnol 2019; 38:334-347. [PMID: 31706693 DOI: 10.1016/j.tibtech.2019.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023]
Abstract
In addition to their use in biomass production and bioremediation, algae have been extensively exploited in biosensing applications. Algae-based biosensors have demonstrated potential for sensitive, sustainable, and multiplexed detection of analytes of agroenvironmental and security interest. Their advantages include the availability of different algal bioreceptors including whole cells and their photosynthetic subcomponents, their potential to be integrated into dual transduction miniaturized devices, and the opportunity for continuous environmental monitoring. Despite obstacles including limited stability and selectivity, algae-based biosensing is a realistic prospect that has some recent effective applications. Strategic exploitation of cutting-edge technologies including materials science, nanotechnology, microfluidics, and genome editing will help to achieve the full potential of algae-based sensors.
Collapse
Affiliation(s)
- Amina Antonacci
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy.
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy.
| |
Collapse
|
19
|
Wey LT, Bombelli P, Chen X, Lawrence JM, Rabideau CM, Rowden SJL, Zhang JZ, Howe CJ. The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis. ChemElectroChem 2019; 6:5375-5386. [PMID: 31867153 PMCID: PMC6899825 DOI: 10.1002/celc.201900997] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/29/2019] [Indexed: 11/05/2022]
Abstract
Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.5 W m-2 and the powering of small electrical devices such as a digital clock have been reported. Improvements in standardisation have meant that this biophotoelectrochemical phenomenon can be further exploited to address biological questions relating to the organisms. Here, we aim to provide both biologists and electrochemists with a review of the progress of BPV development with a focus on biological materials, electrode design and interfacial wiring considerations, and propose steps for driving the field forward.
Collapse
Affiliation(s)
- Laura T. Wey
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Paolo Bombelli
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanItaly
| | - Xiaolong Chen
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB1 2EWUK
| | - Joshua M. Lawrence
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Clayton M. Rabideau
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
- Department of Chemical Engineering and BiotechnologyUniversity of Cambridge Philippa Fawcett DrCambridgeCB3 0ASUK
| | - Stephen J. L. Rowden
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Jenny Z. Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB1 2EWUK
| | - Christopher J. Howe
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|