1
|
Zhou J, Xiao Y, Liu S, Zhang S, Li Z, Zhao C, Li L, Feng J. Research progress on polybenzoxazine aerogels: Preparation, properties, composites and hybrids fabrication, applications. Adv Colloid Interface Sci 2024; 329:103185. [PMID: 38772148 DOI: 10.1016/j.cis.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/20/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The unremitting pursuit of high-performance and multifunctional materials has consistently propelled modern industries forward, stimulating research and motivating progress in related fields. In such materials, polybenzoxazine (PBz) aerogel, which combines the virtues of PBz and aerogel, has attracted salient attention recently, emerging as a novel research focus in the realm of advanced materials. In this review, the preparation scheme, microscopic morphology, and fundamental characteristics of PBz aerogels are comprehensively summarized and discussed in anticipation of providing a clear understanding of the correlation between preparation process, structure, and properties. The effective strategies for enhancing the performance of PBz aerogels including composite fabrication and hybridization are highlighted. Moreover, the applications of PBz-based aerogels in various domains such as adsorption (including wastewater treatment, CO2 capture, and microwave adsorption), thermal insulation, energy storage as well as sensors are covered in detail. Furthermore, several obstacles and potential directions for subsequent research are delineated with a view to surmounting the prevailing constraints and achieving a realization of the shift from experimental exploration to practical applications.
Collapse
Affiliation(s)
- Jinlong Zhou
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China
| | - Yunyun Xiao
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Nanchang 330013, PR China.
| | - Saihui Liu
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China
| | - Sizhao Zhang
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Nanchang 330013, PR China
| | - Zhengquan Li
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Nanchang 330013, PR China
| | - Chunxia Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, PR China
| | - Liangjun Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, PR China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, PR China.
| |
Collapse
|
2
|
Li M, Fan L, Zhang Y, Li X, Liu S, Kang Z, Sun D. Constructing Porous Carbon Electrocatalysts from Cobalt Complex-Decorated Micelles of Mesoporous Silica for Oxygen Reduction/Evolution Reaction. Inorg Chem 2021; 60:14892-14903. [PMID: 34523919 DOI: 10.1021/acs.inorgchem.1c02268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The construction of a porous carbon structure with a high specific surface area is conducive to enhanced electrocatalytic activity due to the accessibility of active sites and improvement of the mass transfer. Herein, we explored the possibility of using micelles of mesoporous silica (MCM-48) as the carbon source to generate porous carbon under the confinement of MCM-48 channels. The complexes formed by Co2+ and 4,4'-bipyridine were in situ incorporated into the micelles to derive Co-related active sites (Co-Nx, Co, and Co3O4) for catalyzing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). After pyrolysis in the N2 atmosphere and subsequent removal of the MCM-48 skeleton, the target porous carbon electrocatalyst was obtained, which exhibited promising performance for both ORR and OER and has great potential as the cathode material for Zn-air battery application. This work not only confirms the effectiveness of using the micelles of MCM-48 as the carbon source for preparing the porous carbon materials, but also provides a new platform for design and synthesis of structurally controllable materials for energy-related electrocatalytic applications.
Collapse
Affiliation(s)
- Mengfei Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lili Fan
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuming Zhang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xuting Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuo Liu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zixi Kang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
3
|
Parkash A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: a highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions. NANOTECHNOLOGY 2021; 32:325703. [PMID: 33902017 DOI: 10.1088/1361-6528/abfb9b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalysts with high active oxygen reduction (ORR) and oxygen evolution reaction (OER) activities are key factors in renewable energy technologies. Unlike common strategies for adjusting the proportion of metal centers in a multi-metal organic framework (MOF), herein, we designed and synthesized bifunctional electrocatalysts using cetyltrimethylammonium bromide (CTAB)-capped ultra-low content platinum (Pt) (≤0.5 wt.% Pt) and copper (Cu) nanoparticles and doped on the surface of zinc-based MOF (Zn-MOF-74) and calcinated at 900 °C. According to the electrochemical activity, the Pt/Cu/NPC-900 exhibits superior catalytic activities towards both the ORR with the onset (E0) and half-wave (E1/2) potentials were 1.0 V and 0.89 V versus RHE, respectively, and OER (Eo = 1.48 V versus RHE and overpotential (η) = 0.265 V versus RHE) in an alkaline electrolyte at ambient temperature. Also, Pt/Cu/NPC-900 catalyzes through a 4-electron process and exhibits superior stability. Such insightful findings, as well as a newly developed approach, provides rational design and synthesis of an economical and efficient strategy for bifunctional electrocatalyst development.
Collapse
Affiliation(s)
- Anand Parkash
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an, West Street 620, Xi'an 710119, People's Republic of China
| |
Collapse
|
4
|
Sikdar N, Schwiderowski P, Medina D, Dieckhöfer S, Quast T, Brix AC, Cychy S, Muhler M, Masa J, Schuhmann W. Trace Metal Loading of B‐N‐Co‐doped Graphitic Carbon for Active and Stable Bifunctional Oxygen Reduction and Oxygen Evolution Electrocatalysts. ChemElectroChem 2021. [DOI: 10.1002/celc.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nivedita Sikdar
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Philipp Schwiderowski
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Danea Medina
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Ann Cathrin Brix
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Steffen Cychy
- Laboratory of Industrial Chemistry Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Justus Masa
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| |
Collapse
|
5
|
Medina D, Löffler T, Morales DM, Masa J, Bobrowski T, Barwe S, Andronescu C, Schuhmann W. Recovering activity of anodically challenged oxygen reduction electrocatalysts by means of reductive potential pulses. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Liu H, Yang DH, Wang XY, Zhang J, Han BH. N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. J Colloid Interface Sci 2021; 581:362-373. [DOI: 10.1016/j.jcis.2020.07.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022]
|
7
|
Qi Y, Yuan S, Cui L, Wang Z, He X, Zhang W, Asefa T. (Fe,Co)/N‐Doped Multi‐Walled Carbon Nanotubes as Efficient Bifunctional Electrocatalysts for Rechargeable Zinc‐Air Batteries. ChemCatChem 2020. [DOI: 10.1002/cctc.202001131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yugang Qi
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Shan Yuan
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Lili Cui
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Zizhun Wang
- School of Materials Science & Engineering and Electron Microscopy Center Jilin University 2699 Qianjin Street Changchun Jilin 130012 P.R. China
| | - Xingquan He
- School of Chemistry and Environmental Engineering Changchun University of Science and Technology 7089 Weixing Road Changchun Jilin 130022 P.R. China
| | - Wei Zhang
- School of Materials Science & Engineering and Electron Microscopy Center Jilin University 2699 Qianjin Street Changchun Jilin 130012 P.R. China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering Rutgers, The State University of New Jersey 610 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
8
|
Möller S, Barwe S, Dieckhöfer S, Masa J, Andronescu C, Schuhmann W. Differentiation between Carbon Corrosion and Oxygen Evolution Catalyzed by Ni
x
B/C Hybrid Electrocatalysts in Alkaline Solution using Differential Electrochemical Mass Spectrometry. ChemElectroChem 2020. [DOI: 10.1002/celc.202000697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra Möller
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr- University BochumUniversitätstr. 150 44780 Bochum Germany
| | - Stefan Barwe
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr- University BochumUniversitätstr. 150 44780 Bochum Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr- University BochumUniversitätstr. 150 44780 Bochum Germany
| | - Justus Masa
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| | - Corina Andronescu
- Technical Chemistry III and CENIDEFaculty of ChemistryUniversity Duisburg-EssenUniversitätstr. 7 45141 Essen Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr- University BochumUniversitätstr. 150 44780 Bochum Germany
| |
Collapse
|
9
|
Krysiak OA, Junqueira JR, Conzuelo F, Bobrowski T, Masa J, Wysmolek A, Schuhmann W. Importance of catalyst–photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04636-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractPhotoelectrochemical water splitting is mostly impeded by the slow kinetics of the oxygen evolution reaction. The construction of photoanodes that appreciably enhance the efficiency of this process is of vital technological importance towards solar fuel synthesis. In this work, Mo-modified BiVO4 (Mo:BiVO4), a promising water splitting photoanode, was modified with various oxygen evolution catalysts in two distinct configurations, with the catalysts either deposited on the surface of Mo:BiVO4 or embedded inside a Mo:BiVO4 film. The investigated catalysts included monometallic, bimetallic, and trimetallic oxides with spinel and layered structures, and nickel boride (NixB). In order to follow the influence of the incorporated catalysts and their respective properties, as well as the photoanode architecture on photoelectrochemical water oxidation, the fabricated photoanodes were characterised for their optical, morphological, and structural properties, photoelectrocatalytic activity with respect to evolved oxygen, and recombination rates of the photogenerated charge carriers. The architecture of the catalyst-modified Mo:BiVO4 photoanode was found to play a more decisive role than the nature of the catalyst on the performance of the photoanode in photoelectrocatalytic water oxidation. Differences in the photoelectrocatalytic activity of the various catalyst-modified Mo:BiVO4 photoanodes are attributed to the electronic structure of the materials revealed through differences in the Fermi energy levels. This work thus expands on the current knowledge towards the design of future practical photoanodes for photoelectrocatalytic water oxidation.
Collapse
|
10
|
Kuo HC, Liu SH, Lin YG, Chiang CL, Tsang DCW. Synthesis of FeCo–N@N-doped carbon oxygen reduction catalysts via microwave-assisted ammoxidation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00376j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A core–shell structured FeCo–N@N-doped carbon derived from biomass wastes (sugarcane and palm kernel shell) is facilely prepared by hydrothermal carbonization and NH3 microwave ammoxidation methods.
Collapse
Affiliation(s)
- Hung-Chih Kuo
- Department of Environmental Engineering
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Shou-Heng Liu
- Department of Environmental Engineering
- National Cheng Kung University
- Tainan 70101
- Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Chao-Lung Chiang
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Kowloon
- China
| |
Collapse
|