1
|
Mao YM, Amreen K, Goel S. Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes. IEEE Trans Nanobioscience 2024; 23:491-498. [PMID: 38587943 DOI: 10.1109/tnb.2024.3385739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Microbial Fuel Cells (MFCs) have recently gained attention, as they are inexpensive, green in nature, and sustainable. As per the report, by Allied Market Research the global market size of MFCs will increase from $ 264.8 million in 2021 to $ 452.2 million in 2030, growing at a CAGR of 4.5%. The present work is a comparative study of various types of electrolytes that can be used in MFCs. The working electrodes were printed using conducting graphene-based Polylactic Acid (PLA) filaments with the help of a 3D printer under the principle of the fused deposition method. Simulated electrolytes and natural environmental microbial electrolytes were used here. Also, electrolytes of pure E. coli culture were studied. Lake water reported the highest power density of 8.259 mW/cm2 while Stale E. Coli reported the lowest around 0.184 mW/cm2. The study comprehensively lists potential wastewaters that can fuel the MFCs. With the pioneering of various comparative studies of electrolytes, one can insight into the recruitment of electrolytes with high-performance benchmarks for miniaturized energy storage and other microelectronics applications.
Collapse
|
2
|
Wen W, Geng C, Li X, Li H, Wu JM, Kobayashi H, Sun T, Zhang Z, Chao D. A Membrane-Free Rechargeable Seawater Battery Unlocked by Lattice Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312343. [PMID: 38691579 DOI: 10.1002/adma.202312343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Seawater batteries that directly utilize natural seawater as electrolytes are ideal sustainable aqueous devices with high safety, exceedingly low cost, and environmental friendliness. However, the present seawater batteries are either primary batteries or rechargeable half-seawater/half-nonaqueous batteries because of the lack of suitable anode working in seawater. Here, a unique lattice engineering to unlock the electrochemically inert anatase TiO2 anode to be highly active for the reversible uptake of multiple cations (Na+, Mg2+, and Ca2+) in aqueous electrolytes is demonstrated. Density functional theory calculations further reveal the origin of the unprecedented charge storage behaviors, which can be attributed to the significant reduction of the cations diffusion barrier within the lattice, i.e., from 1.5 to 0.4 eV. As a result, the capacities of anatase TiO2 with 2.4% lattice expansion are ≈100 times higher than the routine one in natural seawater, and ≈200 times higher in aqueous Na+ electrolyte. The finding will significantly advance aqueous seawater energy storage devices closer to practical applications.
Collapse
Affiliation(s)
- Wei Wen
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Chao Geng
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Xinran Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai, 200433, China
| | - Hongpeng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai, 200433, China
| | - Jin-Ming Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hisayoshi Kobayashi
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tulai Sun
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhenyu Zhang
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Wang B, Peng J, Yang K, Cheng H, Yin Y, Wang C. Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22497-22509. [PMID: 35522598 DOI: 10.1021/acsami.2c06701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of wearable devices has stimulated significant engineering and technologies of textile electronics (TEs). Improving sensing, energy-storing, and electro-heating capabilities of TEs is still challenging but crucial for their practical applications. Herein, a drip-coating method that constructs a dense β-FeOOH scaffold on a nylon strip for enhancing polypyrrole loading is proposed, which facilitates the fabrication of highly conductive and hydrophobic PFCNS (polypyrrole/β-FeOOH/nylon strip). The space provided by the β-FeOOH scaffold increases the mass of polypyrrole on fibers from 1.1 (polypyrrole/nylon strip) to 3.0 mg cm-2 (polypyrrole/β-FeOOH/nylon strip), which decreases the resistance from 104.96 to 34.29 Ω cm-1. The PFCNS exhibits a linear elastic modulus of 0.758 MPa within 150% strain, performs a unique resistance variation mechanism, and enables great sensing capability with rapid response time (140 ms), long durability (10,000 stretching-recovering), and effective movement monitoring (e.g., breathing, back bending, jumping). The sensing signals for knee bending have been analyzed in detail by combining with both stretching and pressing response mechanisms. The PFCNS electrode attains a diffusion-controlled capacitance of 574 mF cm-2 and discharging-capacitance of 916 mF cm-2. Furthermore, an interdigitally parallel connection is proposed, which assists the PFCNS heater in achieving high temperature (84 °C) at a low voltage (4 V). This work provides a simple route for nylon-based TEs and promises satisfactory application in wearable sensors, power sources, and heaters.
Collapse
Affiliation(s)
- Bo Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jun Peng
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kun Yang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Haonan Cheng
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zhang B, Zhang C, Yuan W, Yang O, Liu Y, He L, Hu Y, Zhou L, Wang J, Wang ZL. Highly Stable and Eco-friendly Marine Self-Charging Power Systems Composed of Conductive Polymer Supercapacitors with Seawater as an Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9046-9056. [PMID: 35143173 DOI: 10.1021/acsami.1c22129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A self-charging power system harvesting random and low-frequency wave energy into electricity provides a promising strategy for the construction of smart oceans. However, the system faces huge challenges of easy corrosion in the marine environment and the utilization of toxic organic electrolytes in energy storage devices. To address the issues above, a seawater supercapacitor (SWSC) for the marine self-charging power system is rationally proposed by using a conductive polymer, polypyrrole with hollow morphology (h-PPy), to enhance the stability and capacitance while using seawater as an eco-friendly electrolyte to reduce the cost and achieve sustainability. The hollow design provides a shortcut for the ion transportation of seawater into the h-PPy electrode, and the SWSC achieves a high power density of 4.32 kW kg-1 under an energy density of 5.12 W h kg-1. Even after 180 days in seawater, h-PPy still endows a mass retention of 99.9%, enabling the SWSC to maintain a stability of 99.3% after 6000 cycles. More importantly, when combined with a TENG module as the marine self-charging power system to harvest wave energy, the system provides a stable output in water wave to drive electronics and sensors, which shows a competitive potential in the smart ocean and marine internet of things.
Collapse
Affiliation(s)
- Baofeng Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuguo Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ou Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuebo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Lixia He
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuexiao Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|