1
|
Zhao L, Mazzucato M, Lanzalaco S, Parnigotto M, Khan A, Zitolo A, Cabot PL, Durante C, Sirés I. Boosting the O 2-to-H 2O 2 Selectivity Using Sn-Doped Carbon Electrocatalysts: Towards Highly Efficient Cathodes for Actual Water Decontamination. CHEMSUSCHEM 2025; 18:e202401758. [PMID: 39250234 PMCID: PMC11789999 DOI: 10.1002/cssc.202401758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
The high cost and often complex synthesis procedure of new highly selective electrocatalysts (particularly those based on noble metals) for H2O2 production are daunting obstacles to penetration of this technology into the wastewater treatment market. In this work, a simple direct thermal method has been employed to synthesize Sn-doped carbon electrocatalysts, which showed an electron transfer number of 2.04 and outstanding two-electron oxygen reduction reaction (ORR) selectivity of up to 98.0 %. Physicochemical characterization revealed that this material contains 1.53 % pyrrolic nitrogen, which is beneficial for the production of H2O2, and -C≡N functional group, which is advantageous for H+ transport. Moreover, the high volume ratio of mesopores to micropores is known to favor the quick escape of H2O2 from the electrode surface, thus minimizing its further oxidation. A purpose-made gas-diffusion electrode (GDE) was prepared, yielding 20.4 mM H2O2 under optimal electrolysis conditions. The drug diphenhydramine was selected for the first time as model organic pollutant to evaluate the performance of an electrochemical advanced oxidation process. In conventional electro-Fenton process (pH 3), complete degradation was achieved in only 15 min at 10 mA cm-2, whereas at natural pH 5.9 and 33.3 mA cm-2, almost overall drug removal was reached in 120 min.
Collapse
Affiliation(s)
- Lele Zhao
- Laboratori d'Electroquímica dels Materials i del Medi AmbientDepartament de Ciència de Materials i Química FísicaSecció de Química FísicaFacultat de QuímicaUniversitat de BarcelonaMartí i Franquès 1–1108028BarcelonaSpain
| | - Marco Mazzucato
- Department of Chemical SciencesUniversity of PaduaVia Marzolo 135131PadovaItaly
| | - Sonia Lanzalaco
- Departament d'Enginyeria QuímicaEEBE Universitat Politècnica de CatalunyaC/Eduard Maristany, 10–14, Ed. I208019BarcelonaSpain
| | - Mattia Parnigotto
- Department of Chemical SciencesUniversity of PaduaVia Marzolo 135131PadovaItaly
| | - Anastassiya Khan
- Synchrotron SOLEIL L'Orme des MerisiersDépartementale 12891190Saint-AubinFrance
| | - Andrea Zitolo
- Synchrotron SOLEIL L'Orme des MerisiersDépartementale 12891190Saint-AubinFrance
| | - Pere L. Cabot
- Laboratori d'Electroquímica dels Materials i del Medi AmbientDepartament de Ciència de Materials i Química FísicaSecció de Química FísicaFacultat de QuímicaUniversitat de BarcelonaMartí i Franquès 1–1108028BarcelonaSpain
| | - Christian Durante
- Department of Chemical SciencesUniversity of PaduaVia Marzolo 135131PadovaItaly
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi AmbientDepartament de Ciència de Materials i Química FísicaSecció de Química FísicaFacultat de QuímicaUniversitat de BarcelonaMartí i Franquès 1–1108028BarcelonaSpain
| |
Collapse
|
2
|
Zhou H, Li K, Pan Q, Su Z, Wang R. Application of Nanocomposites in Covalent Organic Framework-Based Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1907. [PMID: 39683295 DOI: 10.3390/nano14231907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
In recent years, the development of high-performance electrocatalysts for energy conversion and environmental remediation has become a topic of great interest. Covalent organic frameworks (COFs), linked by covalent bonds, have emerged as promising materials in the field of electrocatalysis due to their well-defined structures, high specific surface areas, tunable pore structures, and excellent acid-base stability. However, the low conductivity of COF materials often limits their intrinsic electrocatalytic activity. To enhance the catalytic performance of COF-based catalysts, various nanomaterials are integrated into COFs to form composite catalysts. The stable and tunable porous structure of COFs provides an ideal platform for these nanomaterials, leading to improved electrocatalytic activity. Through rational design, COF-based composite electrocatalysts can achieve synergistic effects between nanomaterials and the COF carrier, enabling efficient targeted electrocatalysis. This review summarizes the applications of nanomaterial-incorporated COF-based catalysts in hydrogen evolution, oxygen evolution, oxygen reduction, carbon dioxide reduction, and nitrogen reduction. Additionally, it outlines design principles for COF-based composite electrocatalysis, focusing on structure-activity relationships and synergistic effects in COF composite nanomaterial electrocatalysts, as well as challenges and future perspectives for next-generation composite electrocatalysts.
Collapse
Affiliation(s)
- Haiping Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, The institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kechang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, The institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qingqing Pan
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China
| | - Zhongmin Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, The institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, The institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Zhang Q, Zhi P, Zhang J, Duan S, Yao X, Liu S, Sun Z, Jun SC, Zhao N, Dai L, Wang L, Wu X, He Z, Zhang Q. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313152. [PMID: 38491731 DOI: 10.1002/adma.202313152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Peng Zhi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ningning Zhao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
4
|
Li L, Liu Z, Jiang D, Song M, Wang Y. Bimetallic CoSn nanoparticles anchored on N-doped carbon as antibacterial oxygen reduction catalysts for microbial fuel cells. NANOSCALE 2023; 15:15739-15748. [PMID: 37740420 DOI: 10.1039/d3nr03504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Sluggish oxygen reduction reaction (ORR) kinetics and biofilm formation limit the power generation and stability of microbial fuel cells (MFCs). Herein, bimetallic CoSn nanoparticles anchored on ZIF-derived N-doped carbon (CoSn@NC) were designed and synthesized as bifunctional catalysts to accelerate the ORR and improve the antibacterial activity. Sn modulated the electronic structure of bimetallic CoSn by drawing electrons from Co. Electron redistribution of CoSn@NC optimized the O2 adsorption at Co sites for rapid ORR kinetics. The up-shifted d-band center of Co sites reduced the energy barrier of the rate-determining step for *O formation, resulting in efficient catalytic activity. Bimetallic CoSn nanoparticles were beneficial for the four-electron transfer process for more ˙OH species production. Sn2+ and ˙OH synergistically improved the antibacterial activity of CoSn@NC to inhibit the growth of the cathode biofilm and accelerate mass-charge transfer. CoSn@NC demonstrated superior oxygen reduction activity with a half-wave potential of 0.84 V and an onset potential of 0.90 V, respectively. The MFCs assembled with the CoSn@NC cathodic catalyst exhibited an excellent power density of 1380 mW m-2 and long-term stability for 105 h. This work provides a strategy for the design of antibacterial ORR catalysts for improved catalytic activity and long-term stability.
Collapse
Affiliation(s)
- Liang Li
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Zequan Liu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Demin Jiang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Min Song
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
- Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Mazzucato M, Gavioli L, Balzano V, Berretti E, Rizzi GA, Badocco D, Pastore P, Zitolo A, Durante C. Synergistic Effect of Sn and Fe in Fe-N x Site Formation and Activity in Fe-N-C Catalyst for ORR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54635-54648. [PMID: 36468946 PMCID: PMC9756292 DOI: 10.1021/acsami.2c13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Iron-nitrogen-carbon (Fe-N-C) materials emerged as one of the best non-platinum group material (non-PGM) alternatives to Pt/C catalysts for the electrochemical reduction of O2 in fuel cells. Co-doping with a secondary metal center is a possible choice to further enhance the activity toward oxygen reduction reaction (ORR). Here, classical Fe-N-C materials were co-doped with Sn as a secondary metal center. Sn-N-C according to the literature shows excellent activity, in particular in the fuel cell setup; here, the same catalyst shows a non-negligible activity in 0.5 M H2SO4 electrolyte but not as high as expected, meaning the different and uncertain nature of active sites. On the other hand, in mixed Fe, Sn-N-C catalysts, the presence of Sn improves the catalytic activity that is linked to a higher Fe-N4 site density, whereas the possible synergistic interaction of Fe-N4 and Sn-Nx found no confirmation. The presence of Fe-N4 and Sn-Nx was thoroughly determined by extended X-ray absorption fine structure and NO stripping technique; furthermore, besides the typical voltammetric technique, the catalytic activity of Fe-N-C catalyst was determined and also compared with that of the gas diffusion electrode (GDE), which allows a fast and reliable screening for possible implementation in a full cell. This paper therefore explores the effect of Sn on the formation, activity, and selectivity of Fe-N-C catalysts in both acid and alkaline media by tuning the Sn/Fe ratio in the synthetic procedure, with the ratio 1/2 showing the best activity, even higher than that of the iron-only containing sample (jk = 2.11 vs 1.83 A g-1). Pt-free materials are also tested for ORR in GDE setup in both performance and durability tests.
Collapse
Affiliation(s)
- Marco Mazzucato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Luca Gavioli
- i-LAMP
& Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25133Brescia, Italy
| | - Vincenzo Balzano
- i-LAMP
& Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 46, 25133Brescia, Italy
| | - Enrico Berretti
- Institute
of Chemistry of Organometallic Compounds (ICCOM)—National Research
Council (CNR), Via Madonna
del Piano 10, 50019Sesto Fiorentino, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| | - Andrea Zitolo
- Synchrotron
SOLEIL, L’Orme des Merisiers, BP 48 Saint Aubin, 91192Gif-sur-Yvette, France
| | - Christian Durante
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131Padova, Italy
| |
Collapse
|
6
|
Yin Z, Liu J, Jiang L, Chu J, Yang T, Kong A. Semi-enclosed Cu nanoparticles with porous nitrogen-doped carbon shells for efficient and tolerant nitrate electroreduction in neutral condition. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Schlachter A, Asselin P, Harvey PD. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26651-26672. [PMID: 34086450 DOI: 10.1021/acsami.1c05234] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visible-light irradiation of porphyrin and metalloporphyrin dyes in the presence of molecular oxygen can result in the photocatalytic generation of singlet oxygen (1O2). This type II reactive oxygen species (ROS) finds many applications where the dye, also called the photosensitizer, is dissolved (i.e., homogeneous phase) along with the substrate to be oxidized. In contrast, metal-organic frameworks (MOFs) are insoluble (or will disassemble) when placed in a solvent. When stable as a suspension, MOFs adsorb a large amount of O2 and photocatalytically generate 1O2 in a heterogeneous process efficiently. Considering the immense surface area and great capacity for gas adsorption of MOFs, they seem ideal candidates for this application. Very recently, covalent-organic frameworks (COFs), variants where reticulation relies on covalent rather than coordination bonds, have emerged as efficient photosensitizers. This comprehensive mini review describes recent developments in the use of porphyrin-based or porphyrin-containing MOFs and COFs, including nanosized versions, as heterogeneous photosensitizers of singlet oxygen toward antimicrobial applications.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul Asselin
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
8
|
Wu Z, Wu H, Cai W, Wen Z, Jia B, Wang L, Jin W, Ma T. Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO 2 Reduction to HCOOH. Angew Chem Int Ed Engl 2021; 60:12554-12559. [PMID: 33720479 DOI: 10.1002/anie.202102832] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Electrochemical reduction of CO2 (CO2 RR) into valuable hydrocarbons is appealing in alleviating the excessive CO2 level. We present the very first utilization of metallic bismuth-tin (Bi-Sn) aerogel for CO2 RR with selective HCOOH production. A non-precious bimetallic aerogel of Bi-Sn is readily prepared at ambient temperature, which exhibits 3D morphology with interconnected channels, abundant interfaces and a hydrophilic surface. Superior to Bi and Sn, the Bi-Sn aerogel exposes more active sites and it has favorable mass transfer properties, which endow it with a high FEHCOOH of 93.9 %. Moreover, the Bi-Sn aerogel achieves a FEHCOOH of ca. 90 % that was maintained for 10 h in a flow battery. In situ ATR-FTIR measurements confirmed that the formation of *HCOO is the rate-determining step toward formic acid generation. DFT demonstrated the coexistence of Bi and Sn optimized the energy barrier for the production of HCOOH, thereby improving the catalytic activity.
Collapse
Affiliation(s)
- Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Hengbo Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Weiquan Cai
- School of chemistry and chemical engineering, Guangzhou University, 230 Guangzhou University City Outer Ring Road, Guangzhou, 510006, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
9
|
Wu Z, Wu H, Cai W, Wen Z, Jia B, Wang L, Jin W, Ma T. Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO
2
Reduction to HCOOH. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 P. R. China
| | - Hengbo Wu
- State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Weiquan Cai
- School of chemistry and chemical engineering Guangzhou University 230 Guangzhou University City Outer Ring Road Guangzhou 510006 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Baohua Jia
- Centre for Translational Atomaterials Faculty of Science, Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 P. R. China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Tianyi Ma
- Centre for Translational Atomaterials Faculty of Science, Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| |
Collapse
|
10
|
Efficient nitrate and oxygen electroreduction over pyrolysis-free mesoporous covalent Co-salophen coordination frameworks on carbon nanotubes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Fruehwald HM, Ebralidze II, Zenkina OV, Easton EB. Effect of Transition Metals on the Oxygen Reduction Reaction Activity at Metal‐N
3
/C Active Sites. ChemElectroChem 2020. [DOI: 10.1002/celc.202000954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Holly M. Fruehwald
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| | - Iraklii I. Ebralidze
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| | - Olena V. Zenkina
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| | - E. Bradley Easton
- Electrochemical Materials Lab Faculty of Science Ontario Tech University (University of Ontario Institute of Technology) 2000 Simcoe Street North Oshawa Ontario Canada L1G 0 C5
| |
Collapse
|
12
|
Zirconocene immobilization into organic-inorganic dual-shell silicas prepared by the nonhydrolytic sol-gel method for polyethylene production. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|