1
|
Zhang L, Wang R, Chai W, Ma M, Li L. Controllable Preparation of a N-Doped Hierarchical Porous Carbon Framework Derived from ZIF-8 for Highly Efficient Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48800-48809. [PMID: 37788171 DOI: 10.1021/acsami.3c10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Capacitive deionization (CDI) is a promising desalination technology, and metal-organic framework (MOF)-derived carbon as an electrode material has received more and more attention due to its designable structure. However, MOF-derived carbon materials with single-pore structures have been difficult to meet the technical needs of related fields. In this work, the ordered hierarchical porous carbon framework (OMCF) was prepared by the template method using zeolitic imidazolate frameworks-8 (ZIF-8) as a precursor. The pore structures, surface properties, electrochemical properties, and CDI performances of the OMCF were investigated and compared with the microporous carbon framework (MCF), also derived from ZIF-8. The results show that the hierarchical porous carbon OMCF possessed a higher specific surface area, better hydrophilic surface (with a contact angle of 13.45°), and higher specific capacitance and ion diffusion rate than those of the MCF, which made the OMCF exhibit excellent CDI performances. The adsorption capacity and salt adsorption rate of the OMCF in a 500 mg·L-1 NaCl solution at 1.2 V and a 20 mL·min-1 flow rate were 12.17 mg·g-1 and 3.34 mg·g-1·min-1, respectively, higher than those of the MCF. The deionization processes of the OMCF and MCF closely follow the pseudo-first-order kinetics, indicating the double-layer capacitance control. This work serves as a valuable reference for the CDI application of N-doped hierarchical porous carbon derived from MOFs.
Collapse
Affiliation(s)
- Longyu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wencui Chai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Laboratory of Critical Metals, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Ma
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang Z, Gao M, Peng J, Miao L, Chen W, Ao T. Nanoarchitectonics of heteroatom-doped hierarchical porous carbon derived from carboxymethyl cellulose carbon aerogel and metal-organic framework for capacitive deionization. Int J Biol Macromol 2023; 241:124596. [PMID: 37116842 DOI: 10.1016/j.ijbiomac.2023.124596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Capacitive deionization (CDI) using porous materials offers a sustainable solution for providing affordable freshwater, but the low salt adsorption rate of benchmark carbon materials significantly limit the practical implementation. Herein, we utilized carboxymethyl cellulose sodium (CMC) as the carbon skeleton to produce a composite carbon aerogel loaded with ZIF-8 (ZIF-8/CMC-CA). The presence of ZIF-8 nanoparticles improved the pore structure of the material and provides a certain pseudo capacitance by introducing N. Compared with ZIF-8 derived carbons (ZIF-8-C), the CMC provided a good three-dimensional structure for the dispersion of ZIF-8 nanoparticles, reduced the agglomeration of particles. Furthermore, numerous carboxyl and hydroxyl groups on CMC enhanced the hydrophilicity of materials. Due to the interconnected structure, ZIF-8/CMC-CA exhibited excellent conductivity, a high specific surface area, and offered suitable channels for the rapid entry and exit of ions. In a three-electrode system, the total specific capacitance of the ZIF-8/CMC-CA electrode was 357.14 F g-1. The adsorption rate of ZIF-8/CMC-CA was 2.02 mg g-1 min-1 in a 500 mg L-1 NaCl solution. This study may provide new insight for modifying and fabricating electrode materials for practical CDI applications.
Collapse
Affiliation(s)
- Zhen Wang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China
| | - Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jie Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Luwei Miao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Luo L, He Q, Chen S, Yang D, Chen Y. Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination. ENVIRONMENTAL RESEARCH 2022; 208:112727. [PMID: 35063431 DOI: 10.1016/j.envres.2022.112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) has shown a robust desalination performance, in which the electrode materials play a crucial role. However, commercial activated carbon (AC) commonly with relatively poor conductivity, which can be a limit to the desalination process. To address this issue, we successfully prepared ZIF-8 derived nanocarbon materials (Zx, X = 0, 1, 2, 3, the number representing the activator ratio) via a pyrolysis activation procedure as electrode materials for FCDI desalination. The results manifested that Z3 achieved desalination rates of 0.0403 and 0.094 mg min-1 cm-2 in the isolated closed cycle (ICC) and the short-circuited closed cycle (SCC) mode, respectively, at 1.2 V with only 5 wt% carbon loading. The desalination rate of Z3 in the SCC mode was improved with flow rates and influent salt concentrations increase, reaching 0.278 mg min-1 cm-2 under a continuous operation. In the ICC mode, it was found that the adsorption capacity of the Zx sample was positively correlated with its specific surface area. The superior performance of Z3 could be attributed to the high conductivity, large specific surface area and well-developed pores. Overall, this work provided new insights and references for electrode material's application to FCDI desalination.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China.
| | - Siqi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
4
|
Wu N, Gu X, Zhou S, Han X, Leng H, Zhang P, Yang P, Qi Y, Li S, Qiu J. Hierarchical porous N, S co-doped carbon derived from fish scales for enhanced membrane capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Nguyen TKA, Kuncoro EP, Doong RA. Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
8
|
Enhanced supercapacitor and capacitive deionization boosted by constructing inherent N and P external defects in porous carbon framework with a hierarchical porosity. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136523] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu N, Zhang Y, Xu X, Wang Y. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination. Dalton Trans 2020; 49:6321-6327. [PMID: 32342067 DOI: 10.1039/d0dt00162g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Capacitive deionization technology is an efficient method for brackish water desalination, in which the pseudocapacitive material plays a vital role in determining the desalination performance of the electrode directly. Compared with a traditional double-layer capacitance deionization electrode, a mixed capacitive deionization electrode possesses obvious advantages, because it integrates pseudocapacitance and double-layer capacitance together. A brand-new mixed capacitive deionization electrode is fabricated by co-deposition of P2Mo18O626- and polypyrrole on a 3D exfoliated graphite matrix using an electrochemical technique. In this electrode, composite particles composed of P2Mo18O626- and polypyrrole distribute evenly on the 3D exfoliated graphite matrix. At 1 A g-1 current, the specific capacitance of this electrode is 156.2 mA h g-1. Its rate capability is also promising with more than 76.5% of the capacitance being retained when the current increases to 20 A g-1. At 1.2 V voltage, its desalination capacity and rate reach 17.8 mg g-1 and 1.12 mg g-1 min-1 in 600 mg L-1 NaCl. This satisfactory desalination performance is attributed to the unique electrochemical properties of P2Mo18O623- and polypyrrole and the binder free character of this electrode. Even after 100 cycles, its desalination ability does not decay, which confirms its excellent stability. This work confirms the prospects for polyoxometalate based electrodes in brackish water desalination.
Collapse
Affiliation(s)
- Ning Liu
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| | - Yi Zhang
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| | - Yi Wang
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| |
Collapse
|
10
|
Liu H, Zhang J, Xu X, Wang Q. A Polyoxometalate‐Based Binder‐Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination. Chemistry 2020; 26:4403-4409. [DOI: 10.1002/chem.201905606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Hang Liu
- Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
| | - Juan Zhang
- Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
| | - Xinxin Xu
- Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials MOE Northeastern University Shenyang 110819 P. R. China
| |
Collapse
|