1
|
Shaikh JS, Shaikh NS, Mishra YK, Pawar SS, Parveen N, Shewale PM, Sabale S, Kanjanaboos P, Praserthdam S, Lokhande CD. The implementation of graphene-based aerogel in the field of supercapacitor. NANOTECHNOLOGY 2021; 32:362001. [PMID: 34125718 DOI: 10.1088/1361-6528/ac0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area. The aerogels encompass a high volume of pores which leads to easy soak by the electrolyte and fast charge-discharge process. Graphene aerogels assembled into three-dimensional (3D) architecture prevent there stacking of graphene sheets and maintain the high surface area and hence excellent cycling stability and rate capacitance. However, the energy density of graphene aerogels is limited due to EDLC type of charge storage mechanism. Consequently, 3D graphene aerogel coupled with pseudocapacitive materials such as transition metal oxides, metal hydroxides, conducting polymers, nitrides, chalcogenides show an efficient energy density and power density performance due to the presence of both types of charge storage mechanisms. This laconic review focuses on the design and development of graphene-based aerogel in the field of the supercapacitor. This review is an erudite article about methods, technology and electrochemical properties of graphene aerogel.
Collapse
Affiliation(s)
- Jasmin S Shaikh
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| | - Navajsharif S Shaikh
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - S S Pawar
- Department of Engineering Sciences, Sinhgad College of Engineering, Vadgaon, Pune, 41, India
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Poonam M Shewale
- D. Y. Patil School of Engineering and Technology, Lohegaon, Pune-412 105, Maharashtra, India
| | - Sandip Sabale
- P.G. Department of Chemistry, Jaysingpur College, Jaysingpur-416101, India
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Chandrakant D Lokhande
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| |
Collapse
|
2
|
Xia Z, Bellani V, Sun J, Palermo V. Electrochemical exfoliation of graphite in H 2SO 4, Li 2SO 4 and NaClO 4 solutions monitored in situ by Raman microscopy and spectroscopy. Faraday Discuss 2021; 227:291-305. [PMID: 33346768 DOI: 10.1039/c9fd00123a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The electrochemical exfoliation of graphite is one of the cheapest and most tunable industrial techniques to produce graphene nanosheets with a tunable degree of oxidation and solubility. Anodic oxidation allows high-yield production of electrochemically exfoliated graphene oxide (EGO) in either acid or salt solutions, with the key role played by ions electrochemically driven in between the graphene sheets. This chemical intercalation is followed by a mesoscale mechanical exfoliation process, which is key for the high yield of the process, but which is still poorly understood. In this work, we use Raman spectroscopy to simultaneously monitor the intercalation and oxidation processes taking place on the surface of highly ordered pyrolytic graphite (HOPG) during electrochemical exfoliation. The mechanism of EGO formation in either acidic (0.5 M H2SO4) or neutral (0.5 M Li2SO4) electrolytes through blistering and cracking steps is discussed and described. This process is also compared to the non-destructive intercalation of graphite in an organic electrolyte (1 M NaClO4 in acetonitrile). The results obtained show how high exfoliation yield and low defectivity can be achieved by the combination of efficient, non-destructive intercalation followed by chemical decomposition of the intercalants and gas production.
Collapse
Affiliation(s)
- Zhenyuan Xia
- Industrial and Materials Science, Chalmers University of Technology, Hörsalsvägen 7B, 41258 Göteborg, Sweden
| | | | | | | |
Collapse
|
3
|
Lv H, Pan Q, Song Y, Liu XX, Liu T. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. NANO-MICRO LETTERS 2020; 12:118. [PMID: 34138149 PMCID: PMC7770725 DOI: 10.1007/s40820-020-00451-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/22/2020] [Indexed: 05/14/2023]
Abstract
The article reviews the recent progress of electrochemical techniques on synthesizing nano-/microstructures as supercapacitor electrodes. With a history of more than a century, electrochemical techniques have evolved from metal plating since their inception to versatile synthesis tools for electrochemically active materials of diverse morphologies, compositions, and functions. The review begins with tutorials on the operating mechanisms of five commonly used electrochemical techniques, including cyclic voltammetry, potentiostatic deposition, galvanostatic deposition, pulse deposition, and electrophoretic deposition, followed by thorough surveys of the nano-/microstructured materials synthesized electrochemically. Specifically, representative synthesis mechanisms and the state-of-the-art electrochemical performances of exfoliated graphene, conducting polymers, metal oxides, metal sulfides, and their composites are surveyed. The article concludes with summaries of the unique merits, potential challenges, and associated opportunities of electrochemical synthesis techniques for electrode materials in supercapacitors.
Collapse
Affiliation(s)
- Huizhen Lv
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Qing Pan
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yu Song
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Tianyu Liu
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|