1
|
Garstenauer D, Guggenberger P, Zobač O, Jirsa F, Richter KW. Active site engineering of intermetallic nanoparticles by the vapour-solid synthesis: carbon black supported nickel tellurides for hydrogen evolution. NANOSCALE 2024; 16:20168-20181. [PMID: 39400230 DOI: 10.1039/d4nr03397c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The development and design of catalysts have become a major pillar of latest research efforts to make sustainable forms of energy generation accessible. The production of green hydrogen by electrocatalytic water splitting is dealt as one of the most promising ways to enable decarbonization. To make the hydrogen evolution reaction through electrocatalytic water splitting usable on a large scale, the development of highly-active catalysts with long-term stability and simple producibility is required. Recently, nickel tellurides were found to be an interesting alternative to noble-metal materials. Previous publications dealt with individual nickel telluride species of certain compositions due to the lack of broadly applicable synthesis strategies. For the first time, in this work the preparation of carbon black supported nickel telluride nanoparticles and their catalytic performance for the electrocatalytic hydrogen evolution reaction in alkaline media is presented. The facile vapour-solid synthesis strategy enabled remarkable control over the crystal structure and composition, demonstrating interesting opportunities of active site engineering. Both single- and multi-phase samples containing the Ni-Te compounds Ni3Te2, NiTe, NiTe2-x & NiTe2 were prepared. Onset potentials and overpotentials of -0.145 V vs. RHE and 315 mV at 10 mA cm-2 respectively were achieved. Furthermore, it was found that the mass activity was dependent on the structure and composition of the nickel tellurides following the particular order: Ni3Te2 > NiTe > NiTe2-x > NiTe2.
Collapse
Affiliation(s)
- Daniel Garstenauer
- Department of Functional Materials & Catalysis, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Patrick Guggenberger
- Department of Functional Materials & Catalysis, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ondřej Zobač
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61600 Brno, Czech Republic
| | - Franz Jirsa
- Department of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Department of Zoology, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| | - Klaus W Richter
- Department of Functional Materials & Catalysis, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- X-ray Structure Analysis Centre, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
2
|
Bhat MA, Ul Islam S, Majid K. Interfacial Electronic Structure Engineering of NiCo 2Se 4 and NiTe 2 Nanorods for Enhanced Hydrogen Evolution Reaction. Chemphyschem 2024:e202400454. [PMID: 39180754 DOI: 10.1002/cphc.202400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Abstract
Finding the best candidates with outstanding electrocatalytic capabilities for the hydrogen evolution reaction is essential for realizing large-scale hydrogen production through electrolysis. In this study, we synthesized NiCo2Se4 (NCS) and NiTe2 (NT) nanorod arrays using a hydrothermal method. The confirmation of catalyst formation was achieved through X-ray diffraction analysis, electron microscopy imaging, and X-ray photoelectron spectroscopy. Leveraging the plentiful heterointerfaces and synergistic effects arising from the incorporation of bimetallic components, the NCS/NT electrocatalyst demonstrates remarkable efficacy in catalyzing the hydrogen evolution reaction. It achieves a minimal overpotential of 163 mV to attain a current density of 50 mA cm-2, showcasing exceptional catalytic activity. Further exploration has revealed that the engineering of heterogeneous interfaces and the morphology of nanorods not only guarantee the exposure of numerous active sites and expedite electron-mass transfer but also trigger electron modulation. Such modulation serves to fine-tune the adsorptive and desorptive dynamics of reaction intermediates, culminating in an enhancement of the catalyst's inherent activity. This study illuminates the novel composite electrocatalyst with robust synergy, highlighting the pivotal role of their unique nanostructures in achieving high-efficiency hydrogen production via electrolysis.
Collapse
Affiliation(s)
- Muzaffar A Bhat
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Shahjahan Ul Islam
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Kowsar Majid
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| |
Collapse
|
3
|
Ahmad M, Nawaz T, Hussain I, Meharban F, Chen X, Khan SA, Iqbal S, Rosaiah P, Ansari MZ, Zoubi WA, Zhang K. Evolution of Metal Tellurides for Energy Storage/Conversion: From Synthesis to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310099. [PMID: 38342694 DOI: 10.1002/smll.202310099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Metal telluride (MTe)-based nanomaterials have emerged as a potential alternative for efficient, highly conductive, robust, and durable electrodes in energy storage/conversion applications. Significant progress in the material development of MTe-based electrodes is well-sought, from the synthesis of its nanostructures, integration of MTes with supporting materials, synthesis of their hybrid morphologies, and their implications in energy storage/conversion systems. Herein, an extensive exploration of the recent advancements and progress in MTes-based nanomaterials is reviewed. This review emphasizes elucidating the fundamental properties of MTes and providing a systematic compilation of its wet and dry synthesis methods. The applications of MTes are extensively summarized and discussed, particularly, in energy storage and conversion systems including batteries (Li-ion, Zn-ion, Li-S, Na-ion, K-ion), supercapacitor, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO2 reduction. The review also emphasizes the future prospects and urgent challenges to be addressed in the development of MTes, providing knowledge for researchers in utilizing MTes in energy storage and conversion technologies.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Tehseen Nawaz
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Centre (CNERC) for National Precious Metals Material (NPMM), Kowloon 999077, Hong Kong
| | - Faiza Meharban
- Material College, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai, China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Shahid Ali Khan
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
| | - Sarmad Iqbal
- Department of Energy Conversion and Storage Technical University of Denmark (DTU), Building 310, Fysikvej, Lyngby, DK-2800, Denmark
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Wail Al Zoubi
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon 999077, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Centre (CNERC) for National Precious Metals Material (NPMM), Kowloon 999077, Hong Kong
| |
Collapse
|
4
|
Zhong M, Yang J, Xu M, Ren S, Chen X, Wang C, Gao M, Lu X. Significantly Enhanced Energy-Saving H 2 Production Coupled with Urea Oxidation by Low- and Non-Pt Anchored on NiS-Based Conductive Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304782. [PMID: 37649181 DOI: 10.1002/smll.202304782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Rational designing electrocatalysts is of great significance for realizing high-efficiency H2 production in the water splitting process. Generally, reducing the usage of precious metals and developing low-potential nucleophiles oxidation reaction to replace anodic oxygen evolution reaction (OER) are efficient strategies to promote H2 generation. Here, NiS-coated nickel-carbon nanofibers (NiS@Ni-CNFs) are prepared for low-content Pt deposition (Pt-NiS@Ni-CNFs) to attain the alkaline HER catalyst. Due to the reconfiguration of NiS phase and synergistic effect between Pt and nickel sulfides, the Pt-NiS@Ni-CNFs catalyst shows a high mass activity of 2.74-fold of benchmark Pt/C sample. In addition, the NiS@Ni-CNFs catalyst performs a superior urea oxidation reaction (UOR) activity with the potential of 1.366 V versus reversible hydrogen electrode (RHE) at 10 mA cm-2 , which demonstrates the great potential in the replacement of OER. Thus, a urea-assisted water splitting electrolyzer of Pt-NiS@Ni-CNFs (cathode)||NiS@Ni-CNFs (anode) is constructed to exhibit small voltages of 1.44 and 1.65 V to reach 10 and 100 mA cm-2 , which is much lower than its overall water splitting process, and presents a 6.5-fold hydrogen production rate enhancement. This work offers great opportunity to design new catalysts toward urea-assisted water splitting with significantly promoted hydrogen productivity and reduced energy consumption.
Collapse
Affiliation(s)
- Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Junyu Yang
- Division of Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Meijiao Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Mingbin Gao
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Anantharaj S, Li M, Arulraj R, Eswaran K, C M SF, Murugesan R, Maruthapillai A, Noda S. A tri-functional self-supported electrocatalyst featuring mostly NiTeO 3 perovskite for H 2 production via methanol-water co-electrolysis. Chem Commun (Camb) 2023; 59:12755-12758. [PMID: 37811602 DOI: 10.1039/d3cc02568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A self-supported NiTeO3 perovskite is made by deploying an extended hydrothermal tellurization strategy with a restricted Te content, which was found to be exceptionally active towards the oxidation of water and methanol and the reduction of water in 1.0 M KOH where it delivered -10 mA cm-2 at just -1.54 V for a full cell featuring MOR‖HER.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 2018 016, India.
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 602 203, India
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Mochen Li
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Roshini Arulraj
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 602 203, India
| | - Karthik Eswaran
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 602 203, India
| | - Sara Fidha C M
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 602 203, India
| | - Rajini Murugesan
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 602 203, India
| | - Arthanareeswari Maruthapillai
- Laboratory for Electrocatalysis and Energy, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 602 203, India
| | - Suguru Noda
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Hu S, Xiang C, Zou Y, Xu F, Sun L. Synthesis of NiMoO 4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1871. [PMID: 37368301 DOI: 10.3390/nano13121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO4/NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo4/NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo4/NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm-2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.
Collapse
Affiliation(s)
- Sen Hu
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Cuili Xiang
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yongjin Zou
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fen Xu
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lixian Sun
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
7
|
Construction of nickel sulfide phase-heterostructure for alkaline hydrogen evolution reaction. J Colloid Interface Sci 2023; 633:640-648. [PMID: 36473354 DOI: 10.1016/j.jcis.2022.11.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Constructing transitionmetalsulfides (TMSs) heterostructure is an effective strategy to optimize the catalytic performance for hydrogen evolution reaction (HER) in alkaline medium. Herein, the rhombohedral nickel sulfide/hexagonal nickel sulfide (r-NiS/h-NiS) catalysts with the NiS phase-heterostructure were successfully fabricated by a simple one pot method. The r-NiS/h-NiS (1.25) (1.25 means the theoretical mole ratio of S and Ni added to reaction) displayed the excellent HER performance with low overpotential (101 ± 1 mV@10 mA cm-2) and small Tafel slope (62.10 ± 0.1 mV dec-1), which were superior to the pure phase r-NiS and h-NiS. In this work, the improved HER catalytic performances were attributed to the dense coupling interfaces between the r-NiS and h-NiS. This work shows the feasibility of construction NiS phase-heterostructure and provides a novel strategy for the application of NiS for water splitting.
Collapse
|
8
|
Shah SSA, Khan NA, Imran M, Rashid M, Tufail MK, Rehman AU, Balkourani G, Sohail M, Najam T, Tsiakaras P. Recent Advances in Transition Metal Tellurides (TMTs) and Phosphides (TMPs) for Hydrogen Evolution Electrocatalysis. MEMBRANES 2023; 13:113. [PMID: 36676920 PMCID: PMC9863077 DOI: 10.3390/membranes13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The hydrogen evolution reaction (HER) is a developing and promising technology to deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production methods. Nevertheless, the most active platinum (Pt) metal-based catalysts for the HER are subject to high cost and substandard stability. Therefore, a highly efficient, low-cost, and stable HER electrocatalyst is urgently desired to substitute Pt-based catalysts. Due to their low cost, outstanding stability, low overpotential, strong electronic interactions, excellent conductivity, more active sites, and abundance, transition metal tellurides (TMTs) and transition metal phosphides (TMPs) have emerged as promising electrocatalysts. This brief review focuses on the progress made over the past decade in the use of TMTs and TMPs for efficient green hydrogen production. Combining experimental and theoretical results, a detailed summary of their development is described. This review article aspires to provide the state-of-the-art guidelines and strategies for the design and development of new highly performing electrocatalysts for the upcoming energy conversion and storage electrochemical technologies.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Naseem Ahmad Khan
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rashid
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Aziz ur Rehman
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Tayyaba Najam
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, RAS, 20 Akademicheskaya Str., Yekaterinburg 620990, Russia
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia
| |
Collapse
|
9
|
Hydrogen Evolution Reaction Activities of Room-Temperature Self-Grown Glycerol-Assisted Nickel Chloride Nanostructures. Catalysts 2023. [DOI: 10.3390/catal13010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Three-dimensional nanomaterials of desired structural/morphological properties and highly porous with a high specific surface area are important in a variety of applications. In this work, glycerol-mediated self-growth of 3-D dandelion flower-like nickel chloride (NiCl2) from nickel-foam (NiF) is obtained for the first time using a room-temperature (27 °C) processed wet chemical method for electrocatalysis application. Glycerol-mediated self-grown NiCl2 flowers demonstrate an excellent electrocatalytic performance towards the hydrogen evolution reaction (HER), which is much superior to the NiF (303 mV) and NiCl2 electrode prepared without glycerol (208 mV) in the same electrolyte solution. With a Tafel slope of 41 mV dec−1, the NiCl2 flower electrode confirms improved reaction kinetics as compared to the other two electrodes, i.e., NiF (106 mVdec−1) and NiCl2 obtained without glycerol (56 mV dec−1). The stability of the glycerol-based NiCl2 electrode has further been carried out for 2000 cycles with the overpotential diminution of just 8 mV, approving an electrocatalyst potential of glycerol-based NiCl2 electrode towards HER kinetics. This simple and easy growth process involves nucleation, aggregation, and crystal growth steps for producing NiCl2 nanostructures for electrocatalytic water splitting application through the HER process.
Collapse
|
10
|
Samal R, Debbarma C, Rout CS. Transition metal tellurides/2D Ti3C2Tx MXene: Investigation towards active alkaline hydrogen evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Xiao Q, Xu X, Fan C, Qi Z, Jiang S, Deng Q, Tong Q, Zhang Q. Deposition of Cu on Ni3S2 nanomembranes with simply spontaneous replacement reaction for enhanced hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Gao Y, Wu Y, He H, Tan W. Potentiostatic electrodeposition of Ni-Se-Cu on nickel foam as an electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 2020; 578:555-564. [PMID: 32544627 DOI: 10.1016/j.jcis.2020.06.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 02/04/2023]
Abstract
Development of cost-effective and efficient earth-abundant catalysts for hydrogen evolution reaction (HER) is a great challenge. In this study, by one-step potentiostatic electrodeposition, the Ni-Se-Cu electrocatalyst on nickel foam was fabricated as a binder-free HER electrocatalyst. As compared with Ni-Se electrocatalysts, such fabricated Ni-Se-Cu electrocatalyst exhibited prominent electrocatalytic activity to the HER in alkaline electrolyte. This Ni-Se-Cu electrocatalyst exhibits a small overpotential of 136 mV to achieve a current density of 10 mA·cm-2 and high electrochemical stability. The remarkable HER properties of Ni-Se-Cu electrocatalyst mainly originate from high electronic conductivity induced by Cu-doping. This work shows a cheap and simple avenue to develop high efficient non-noble electrochemical electrocatalysts for HER.
Collapse
Affiliation(s)
- Ying Gao
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; Beijing Sinoma Synthetic Crystals Co., Ltd, Beijing 100018, China
| | - Yihui Wu
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Hanwei He
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.
| | - Wenyu Tan
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Abstract
Hydrogen evolution reaction (HER) is one of the most important reactions in electrochemistry. This is not only because it is the simplest way to produce high purity hydrogen and the fact that it is the side reaction in many other technologies. HER actually shaped current electrochemistry because it was in focus of active research for so many years (and it still is). The number of catalysts investigated for HER is immense, and it is not possible to overview them all. In fact, it seems that the complexity of the field overcomes the complexity of HER. The aim of this review is to point out some of the latest developments in HER catalysis, current directions and some of the missing links between a single crystal, nanosized supported catalysts and recently emerging, single-atom catalysts for HER.
Collapse
|
14
|
Bhat KS, Nagaraja HS. Recent trends and insights in nickel chalcogenide nanostructures for water-splitting reactions. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14328917.2019.1703523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Karthik S. Bhat
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| | - H. S. Nagaraja
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| |
Collapse
|