1
|
Arularasu MV, Rajendran TV, Arkook B, Harb M, Kaviyarasu K. Enhanced Electrochemical Performance of Highly Porous CeO 2-Doped Zr Nanoparticles for Supercapacitor Applications. Microsc Res Tech 2025; 88:621-630. [PMID: 39511897 PMCID: PMC11842945 DOI: 10.1002/jemt.24728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The aim of this work was to develop an ultrasonic-assisted synthesis method for the fabrication of CeO2-doped Zr nanoparticles that would improve the performance of supercapacitor electrodes. This method, which eliminates the need for high-temperature calcination, involves embedding CeO2 into Zr nanoparticles through 1 hr (CeO2-Zr-1) and 2 hrs (CeO2-Zr-2) of ultrasonic irradiation, resulting in the formation of nanostructures with significant improvements in their electrochemical properties. Through physicochemical analysis, we observed that the CeO2-doped Zr nanoparticles, particularly those treated for 2 hrs (CeO2-Zr-2), exhibit superior crystalline phase purity, optimal chemical surface composition, minimal agglomeration with particle sizes below 50 nm, and an impressive average surface area of 178 m2/g. Compared to the 1 hr irradiation samples (CeO2-Zr-1) and undoped CeO2 nanoparticles, the (CeO2-Zr-2) electrodes demonstrated a remarkable capacitance of 198 Fg-1 at a current density of 1 A/g while maintaining ~94.9% of their capacity after 3750 cycles. This indicates not only good reversibility but also exceptional stability. In (CeO2-Zr-2) samples, the nanospherical structure achieved through ultrasonic synthesis is responsible for the enhanced capacitive behavior and stability, along with the synergistic effects caused by Zr doping, which improves the CeO2 nanoparticle conductivity to a significant extent. Surface areas of the electrodes are larger due to the combination of these two materials, which contribute to their superior performance.
Collapse
Affiliation(s)
- M. V. Arularasu
- Sustainable Energy and Environment Research Unit, Center for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical ScienceChennaiTamil NaduIndia
| | - T. V. Rajendran
- Department of ChemistrySRM Institute of Science and TechnologyChennaiTamil NaduIndia
| | - Bassim Arkook
- Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - K. Kaviyarasu
- UNESCO‐UNISA Africa Chair in Nanoscience's/Nanotechnology Laboratories, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa
| |
Collapse
|
2
|
Kumar S, Ahmed F, Shaalan NM, Arshi N, Dalela S, Chae KH. Structural, Optical, Magnetic and Electrochemical Properties of CeXO 2 (X: Fe, and Mn) Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2290. [PMID: 36984170 PMCID: PMC10056175 DOI: 10.3390/ma16062290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
CeXO2 (X: Fe, Mn) nanoparticles, synthesized using the coprecipitation route, were investigated for their structural, morphological, magnetic, and electrochemical properties using X-ray diffraction (XRD), field emission transmission electron microscopy (FE-TEM), dc magnetization, and cyclic voltammetry methods. The single-phase formation of CeO2 nanoparticles with FCC fluorite structure was confirmed by the Rietveld refinement, indicating the successful incorporation of Fe and Mn in the CeO2 matrix with the reduced dimensions and band gap values. The Raman analysis supported the lowest band gap of Fe-doped CeO2 on account of oxygen non-stoichiometry. The samples exhibited weak room temperature ferromagnetism, which was found to be enhanced in the Fe doped CeO2. The NEXAFS analysis supported the results by revealing the oxidation state of Fe to be Fe2+/Fe3+ in Fe-doped CeO2 nanoparticles. Further, the room temperature electrochemical performance of CeXO2 (X: Fe, Mn) nanoparticles was measured with a scan rate of 10 mV s-1 using 1 M KCL electrolyte, which showed that the Ce0.95Fe0.05O2 electrode revealed excellent performance with a specific capacitance of 945 Fּ·g-1 for the application in energy storage devices.
Collapse
Affiliation(s)
- Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Physics, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Saurabh Dalela
- Department of Pure & Applied Physics, University of Kota, Kota 324005, India
| | - Keun H. Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| |
Collapse
|
3
|
Cao Y, He H, Li S, Ruan P, Yi J, Qiu W. The Preparation and Modification of Strontium Titanate Ceramic Films for High‐Performance Flexible Supercapacitor. ChemElectroChem 2023. [DOI: 10.1002/celc.202200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yi Cao
- Institute for Advanced Materials Hubei Normal University Huangshi 435002 China
| | - Huang He
- Hubei Three Gorges Polytechnic Yichang 443000 China
| | - Shijingmin Li
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
| | - Piao Ruan
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
| | - Jianglong Yi
- China-Ukraine Institute of Welding Guangdong Academy of Sciences Guangdong Provincial Key Laboratory of Advanced Welding Technology Guangzhou 510650 China
| | - Wenfeng Qiu
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
| |
Collapse
|
4
|
Rashid J, Ahsan A, Xu M, Savina I, Rehman F. Synthesis of cerium oxide embedded perovskite type bismuth ferrite nanocomposites for sonophotocatalysis of aqueous micropollutant ibuprofen. RSC Adv 2023; 13:2574-2586. [PMID: 36741173 PMCID: PMC9844074 DOI: 10.1039/d2ra07509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Ibuprofen is potentially toxic and carcinogenic for freshwater ecosystems and poses a serious threat to human health by affecting kidney function. The present study focused on the sunlight-controlled degradation of ibuprofen from water using a novel magnetically separable cerium oxide-embedded bismuth ferrite heterostructure. Catalysts were synthesized by solvothermal and co-precipitation methods and characterized by X-ray diffractometry, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis optical absorption spectroscopy, and nitrogen adsorption. This study investigated the effect of photocatalysis, sonolysis, sonophotolysis, and sonophotocatalysis on the degradation of ibuprofen in water. Pseudo-first-order and second-order kinetics were applied to evaluate the rate of reaction for ibuprofen degradation. The addition of 5% CeO2 to the BiFeO3 significantly increased the surface area and pore volume of bismuth ferrite, which enhanced their photocatalytic degradation efficiency by 2.28 times in terms of ibuprofen mineralization. Sonolysis treatment alone and in combination with photolysis led to the degradation of ibuprofen, but with the formation of intermediate products. Positive synergy was observed when sonolysis was combined with photocatalysis in terms of the mineralization of ibuprofen and the degradation of intermediates along with their parent compound. It was proposed that, compared to photocatalytic mineralization, the ultrasound-assisted advanced oxidation process resulted in the conversion of ibuprofen to its mineralization products.
Collapse
Affiliation(s)
- Jamshaid Rashid
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087 China
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Ali Ahsan
- Department of Environmental Science, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087 China
| | - Irina Savina
- School of Applied Sciences, University of Brighton Huxley Building, Lewes Road Brighton BN2 4GJ UK
| | - Faisal Rehman
- Department of Earth Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
5
|
Cao B, Liu B, Xi Z, Cheng Y, Xu X, Jing P, Cheng R, Feng SP, Zhang J. Rational Design of Porous Nanowall Arrays of Ultrafine Co 4N Nanoparticles Confined in a La 2O 2CN 2 Matrix on Carbon Cloth for a High-Performing Supercapacitor Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47517-47528. [PMID: 36240119 DOI: 10.1021/acsami.2c09377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal nitrides (TMNs) have received special concern as important energy storage materials, owing to their high conductibility, good mechanical strength, and superior corrosion resistance. However, their insufficient capacitance and poor cycling stability limit their practical applications for supercapacitors. Here, a novel three-dimensional (3D) self-supported integrated electrode consisted of porous nanowall arrays of ultrafine cobalt nitride (Co4N) nanoparticles encapsulated in a lanthanum oxycyanamide (LOC) matrix on carbon cloth (Co4N@LOC/CC) for outstanding electrochemical energy storage is rationally designed and fabricated. The 3D monolithic configuration of porous nanowall arrays facilitates the mass/charge transfer, the exposure of electroactive sites, and the enhancement of electrical conductivity. Meanwhile, the unique core-shell structure of Co4N@LOC can prevent ultrafine Co4N nanoparticles from sintering, agglomeration, and oxidation and promotes electron transfer dynamics during the redox reaction, meanwhile enhancing the stability of the electrode. Additionally, the synergy of Co4N and LOC can result in an efficient electron/ion transport in the process of the charge-discharge. Because of these features, the Co4N@LOC/CC electrode displays superior specific capacitance (895.6 mF cm-2 or 613.4 F g-1 at 1 mA cm-2) and admirable cycling durability (87.9% capacitance reservation after 10 000 cycles), surpassing the majority of nitride-based electrodes reported thus far. Furthermore, after being assembled into an asymmetric supercapacitor using active carbon (AC) as an anode, the obtained Co4N@LOC/CC//AC/CC device displays a high energy density of 41.7 Wh kg-1 at the power density of 875.8 W kg-1 with a high capacitance reservation of 87.6% after 5000 cycles at 2 mA cm-2. This work offers an efficient approach of combining TMNs with rare earth compounds to enhance the capacitance and stability of TMNs for supercapacitor electrodes.
Collapse
Affiliation(s)
- Bo Cao
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Baocang Liu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Zichao Xi
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Yan Cheng
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Xuan Xu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Peng Jing
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
| | - Rui Cheng
- Department of Mechanical Engineering, The University of Hong Kong, 142 Pok Fu Lam Road, Pok Fu Lam999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, 142 Pok Fu Lam Road, Pok Fu Lam999077, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot010020, People's Republic of China
- Inner Mongolia Academy of Science and Technology, 70 Zhaowuda Road, Hohhot010010, People's Republic of China
- Inner Mongolia Guangheyuan Nano High-Tech Company, Limited, Ejin Horo Banner, Ordos017299, People's Republic of China
| |
Collapse
|
6
|
Ren X, Sun M, Gan Z, Li Z, Cao B, Shen W, Fu Y. Hierarchically nanostructured Zn 0.76C 0.24S@Co(OH) 2 for high-performance hybrid supercapacitor. J Colloid Interface Sci 2022; 618:88-97. [PMID: 35334365 DOI: 10.1016/j.jcis.2022.03.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
It is a great challenge to achieve both high specific capacity and high energy density of supercapacitors by designing and constructing hybrid electrode materials through a simple but effective process. In this paper, we proposed a hierarchically nanostructured hybrid material combining Zn0.76Co0.24S (ZCS) nanoparticles and Co(OH)2 (CH) nanosheets using a two-step hydrothermal synthesis strategy. Synergistic effects between ZCS nanoparticles and CH nanosheets result in efficient ion transports during the charge-discharge process, thus achieving a good electrochemical performance of the supercapacitor. The synthesized ZCS@CH hybrid exhibits a high specific capacity of 1152.0 C g-1 at a current density of 0.5 A g-1 in 2 M KOH electrolyte. Its capacity retention rate is maintained at ∼ 70.0% when the current density is changed from 1 A g-1 to 10 A g-1. A hybrid supercapacitor (HSC) assembled from ZCS@CH as the cathode and active carbon (AC) as the anode displays a capacitance of 155.7 F g-1 at 0.5 A g-1, with a remarkable cycling stability of 91.3% after 12,000cycles. Meanwhile, this HSC shows a high energy density of 62.5 Wh kg-1 at a power density of 425.0 W kg-1, proving that the developed ZCS@CH is a promising electrode material for energy storage applications.
Collapse
Affiliation(s)
- Xiaohe Ren
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Ziwei Gan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China.
| | - Baobao Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
7
|
He Y, Zhou W, Xu J. Rare Earth-Based Nanomaterials for Supercapacitors: Preparation, Structure Engineering and Application. CHEMSUSCHEM 2022; 15:e202200469. [PMID: 35446482 DOI: 10.1002/cssc.202200469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Supercapacitors (SCs) can effectively alleviate problems such as energy shortage and serious greenhouse effect. The properties of electrode materials directly affect the performance of SCs. Rare earth (RE) is known as "modern industrial vitamins", and their functional materials have been listed as key strategic materials. In the past few years, the number of scientific reports on RE-based nanomaterials for SCs has increased rapidly, confirming that adding RE elements or compounds to the host electrode materials with various nanostructured morphologies can greatly enhance their electrochemical performance. Although RE-based nanomaterials have made rapid progress in SCs, there are very few works providing a comprehensive survey of this field. In view of this, a comprehensive overview of RE-based nanomaterials for SCs is provided here, including the preparation methods, nanostructure engineering, compounds, and composites, along with their capacitance performances. The structure-activity relationships are discussed and highlighted. Meanwhile, the future challenges and perspectives are also pointed out. This Review can not only provide guidance for the further development of SCs but also arouse great interest in RE-based nanomaterials in other research fields such as electrocatalysis, photovoltaic cells, and lithium batteries.
Collapse
Affiliation(s)
- Yao He
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
8
|
Ren X, Gan Z, Sun M, Fang Q, Yan Y, Sun Y, Huang J, Cao B, Shen W, Li Z, Fu Y. Colloidal synthesis of flower-like Zn doped Ni(OH)2@CNTs at room-temperature for hybrid supercapacitor with high rate capability and energy density. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Fang Q, Sun M, Ren X, Sun Y, Yan Y, Gan Z, Huang J, Cao B, Shen W, Li Z, Fu Y. MnCo 2O 4/Ni 3S 4 nanocomposite for hybrid supercapacitor with superior energy density and long-term cycling stability. J Colloid Interface Sci 2021; 611:503-512. [PMID: 34971961 DOI: 10.1016/j.jcis.2021.12.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
MnCo2O4 is regarded as a good electrode material for supercapacitor due to its high specific capacity and good structural stability. However, its poor electrical conductivity limits its wide-range applications. To solve this issue, we integrated the MnCo2O4 with Ni3S4, which has a good electrical conductivity, and synthesized a MnCo2O4/Ni3S4 nanocomposite using a two-step hydrothermal process. Comparing with individual MnCo2O4 and Ni3S4, the MnCo2O4/Ni3S4 nanocomposite showed a higher specific capacity and a better cycling stability as the electrode for the supercapacitor. The specific capacity value of the MnCo2O4/Ni3S4 electrode was 904.7 C g-1 at 1 A g-1 with a potential window of 0-0.55 V. A hybrid supercapacitor (HSC), assembled using MnCo2O4/Ni3S4 and active carbon as the cathode and anode, respectively, showed a capacitance of 116.4 F g-1 at 1 A g-1, and a high energy density of 50.7 Wh kg-1 at 405.8 W kg-1. Long-term electrochemical stability tests showed an obvious increase of the HSC's capacitance after 5500 charge/discharge cycles, reached a maximum value of ∼162.7% of its initial value after 25,000 cycles, and then remained a stable value up to 64,000 cycles. Simultaneously, its energy density was increased to 54.2 Wh kg-1 at 380.3 W kg-1 after 64,000 cycles.
Collapse
Affiliation(s)
- Qisheng Fang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Xiaohe Ren
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Yongxiu Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Yijun Yan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Ziwei Gan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China
| | - Jianan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Baobao Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenzhong Shen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 6111731, PR China.
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
10
|
Wu K, Cao CF, Zhou C, Luo Y, Chen CQ, Lin L, Au C, Jiang L. Engineering of Ce3+-O-Ni structures enriched with oxygen vacancies via Zr doping for effective generation of hydrogen from ammonia. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Asaithambi S, Sakthivel P, Karuppaiah M, Balaji V, Yuvakkumar R, Velauthapillai D, Ravi G. Facile synthesis of a heterostructured lanthanum-doped SnO 2 anchored with rGO for asymmetric supercapacitors and photocatalytic dye degradation. NEW J CHEM 2021. [DOI: 10.1039/d1nj04584a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to its good redox properties, excellent electron–hole pair generation, wide band gap and outstanding chemical stability, SnO2 has been considered as a promising bifunctional material for supercapacitors as well as photocatalysts, but its poor conductivity and low surface area limit the specific capacitance and catalytic efficiency.
Collapse
Affiliation(s)
- S. Asaithambi
- Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu, India
- Department of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| | - P. Sakthivel
- Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu, India
| | - M. Karuppaiah
- Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu, India
| | - V. Balaji
- Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu, India
| | - R. Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Department of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| | - G. Ravi
- Department of Physics, Alagappa University, Karaikudi – 630003, Tamil Nadu, India
| |
Collapse
|