1
|
Hu Z, Lin L, Jiang Y, Sun L, Wang Q, Zhao J, Chen P, Wang X, Liu H, Liu W, Yang C, Wang F, Liu W. Research of the transition from a aqueous zinc ion battery to an aqueous hydrogen proton battery triggered by the Cu@Cu 31S 16 cathode material development. J Colloid Interface Sci 2024; 673:628-637. [PMID: 38897064 DOI: 10.1016/j.jcis.2024.06.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The aqueous zinc ion battery (AZIB) has been widely studied due to its rapid kinetics and high specific capacity attributed to the chemical insertion of H+ protons. However, the current research landscape lacks comprehensive investigations into copper-based sulfide materials and the intricate co-embedding/extraction mechanism of H+/Zn2+. In this study, we employed an innovative in-situ etching method to synthesize a current collector-integrated Cu@Cu31S16 cathode material. Cu31S16 not only exhibits excellent stability and conductivity but also activates proton insertion chemistry. Consequently, we have demonstrated, for the first time, efficient and reversible co-embedding/extraction behavior of H+/Zn2+ in Zn-Cu31S16 batteries. Specifically, owing to the lower charging and discharging plateaus of zinc ions (0.65 V, 0.45 V) compared to H+ (0.97 V, 0.84 V) in Zn-Cu31S16 batteries, two distinct plateaus were observed. Moreover, we delved into the mechanism of ion co-embedding/extraction by exploring different ions (Zn2+, H+/Zn2+, H+) within varying voltage ranges. This exploration led to the development of three types of ion batteries, where Zn2+, H+/Zn2+, and H+ exhibit co-embedding/extraction within voltage ranges of 0.3-0.9 V, 0.3-1.05 V, and 0.5-1.05 V, respectively. These batteries have achieved impressive performance with specific capacities of 282.74 mAh g-1, 587.4 mAh g-1 and 687.3 mAh g-1, respectively. Introducing the concept of "Voltage-Selective Ion Co-Embedding/Extraction", this study broadens the research scope of AZIBs. This research not only offers a feasible solution and theoretical guidance for future proton batteries but also underscores the tremendous potential of AHPB.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Li Lin
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yi Jiang
- School of Science, Changchun Institute of Technology, Changchun 130012, China
| | - Lianshan Sun
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Qingshuang Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jianxun Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Peng Chen
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xinwei Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Heng Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wanqiang Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Chunpeng Yang
- Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Fang Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Zhongshan Institute of Changchun University of Science and Technology, 16 Huizhandong Road, Huoju Development District, Zhongshan 528437, China.
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
2
|
Song D, Zhu T, Yang R, Zhao Y, Sun C, Zhao J. Graft-growth of CoCo-PBA on defect-rich Cu1.94S arrays for high-current-density water splitting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Sun KZ, Wen CF, Qu X, Liu PF, Yang HG. 1D@2D Hierarchical Structures of Co(OH) x Nanosheets on NiMoO x Nanorods Can Mediate Alkaline Hydrogen Evolution with Industry-Level Current Density and Stability. SMALL METHODS 2022; 6:e2200484. [PMID: 36047656 DOI: 10.1002/smtd.202200484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Developing efficient electrocatalysts at ampere-scale current densities is of paramount importance to advance industrial applications of alkaline water electrolysis. Herein, a hierarchical nanostructured electrocatalyst with two-dimensional Co(OH)x nanosheets grown on one-dimensional NiMoOx nanorods over three-dimensional porous Ni foam substrate is designed. The resulting catalyst delivers ultrahigh hydrogen evolution reaction (HER) activity in the alkaline solution, which only requires overpotentials of 185 and 332 mV to achieve the current densities of -500 and -1000 mA cm-2 in 1.0 m KOH, respectively, and shows robust stability at -1000 mA cm-2 for 11 days. The unique 1D @ 2D hierarchical structures with abundant hetero-interfaces can not only expose sufficient active sites but also boost alkaline HER kinetics with fast water dissociation ability. This present work may pave a new insight to design efficient electrocatalysts with hierarchical structures for alkaline HER with industry-level current density and stability.
Collapse
Affiliation(s)
- Kai Zhi Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xue Qu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Li TM, Hu BQ, Han JH, Lu W, Yu F, Li B. Highly Effective OER Electrocatalysts Generated from a Two-Dimensional Metal-Organic Framework Including a Sulfur-Containing Linker without Doping. Inorg Chem 2022; 61:7051-7059. [PMID: 35482998 DOI: 10.1021/acs.inorgchem.2c00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) with different topologies formed by the self-assembly of sulfur-containing inorganic ligands, cobalt ions, and large ligands can be used to prepare electrocatalysts for water splitting in order to fully explore the advantages of MOFs in terms of structural tailoring and quantitative assembly. It is possible to avoid using an extradoped sulfur source to reduce waste as well as to disperse Co and sulfur elements evenly and controllably throughout the final material to maximize the overall synergistic effect. In this work, different kinds of bimetallic MOF materials containing sulfur can be synthesized very conveniently by using an economical and practical diffusion method. These materials are directly used as OER electrocatalysts, and the bimetallic MOFs have the best electrocatalytic performance when the ratio of Co to Fe is 6:4. The overpotential at a current density of 10 mA cm-2 was 260 mV, with a Tafel slope of 56 mV dec-1 and good stability. It was assembled with 20% commercial Pt/C material into a two-electrode system for all-water decomposition, and the decomposition voltage at 10 mA cm-2 was 1.81 V. From the electronic configuration microscopic point of view, the introduction of iron ions changed the original synergistic effect for Co-S-Co, which more easily led to the formation of high-valence Co3+ and finally produced highly active electrocatalytic sites. From a macroscopic point of view, the material produced in situ during the electrochemical reaction process not only retains the original 2D layered structure but also utilizes bubbles to produce a loose structure with defective sites. These structural features are advantageous because they provide not only an abundance of active sites and permeable channels but also the necessary interfaces and electron-transport channels for the formation of electrostatic charge-separation layers, making it easier to intercalate and delaminate the hydroxide ions. Furthermore, the changed hydroxyl ions and nitrogen and sulfur atoms on the channel surface may operate as interaction sites, increasing the surface characteristics, facilitating electron transfer, and reducing electron-transfer resistance. To summarize, the rational design of sulfur-containing layered MOF materials directly as water-splitting catalysts is a crucial next step in developing cost-effective, environmentally friendly, and low-energy-consumption electrocatalysts based on the findings of this study.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
5
|
Xie S, Liu C, Song R, Ji Y, Xiao Z, Huo C, Lin S. A facile and environmental‐friendly approach to synthesize S‐doped Fe/Ni layered double hydroxide catalyst with high oxygen evolution reaction efficiency in water splitting. ChemElectroChem 2022. [DOI: 10.1002/celc.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shijie Xie
- Hainan University School of Materials Science and Engineering CHINA
| | - Changsheng Liu
- Hainan University School of Materials Science and Engineering CHINA
| | - Runwei Song
- Hainan University School of Materials Science and Engineering CHINA
| | - Yingxi Ji
- Hainan University School of Materials Science and Engineering CHINA
| | - Zhaohui Xiao
- Hainan University School of Materials Science and Engineering CHINA
| | - Chunqing Huo
- Hainan University School of Materials Science and Engineering No. 58, Renmin Avenue 570228 Haikou CHINA
| | - Shiwei Lin
- Hainan University School of Materials Science and Engineering CHINA
| |
Collapse
|
6
|
Xu H, Song D, Li J, Zhao Y, Yang R, Zhao J. Chlorine-assisted synthesis of CuCo 2S 4@(Cu,Co) 2Cl(OH) 3 heterostructures with an efficient nanointerface for electrocatalytic oxygen evolution. J Colloid Interface Sci 2021; 601:437-445. [PMID: 34090024 DOI: 10.1016/j.jcis.2021.05.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022]
Abstract
The demand for sustainable energy sources urges the development of efficient and earth-abundant electrocatalysts. Herein, chlorine assisted ion-exchange and in-situ sulfurization processes were combined to construct CuCo2S4@(Cu,Co)2Cl(OH)3 heterostructures from Cu(OH)2 nanoarrays. Chlorine element in the cobalt source stimulated the formation of (Cu,Co)2Cl(OH)3 precursor, and further facilitated partial transformation of the precursor to CuCo2S4 on the surface to achieve composite structure. The mixed valences of Co element (Co3+ in CuCo2S4 and Co2+ in (Cu,Co)2Cl(OH)3) and OS interpenetrated nanointerface in the composite catalysts provided low electron transfer resistance for good alkaline oxygen evolution reaction (OER) activities. In 1 mol L-1 KOH electrolyte, the overpotentials of the optimal composite catalyst reached 253 and 290 mV respectively at the current density of 20 and 50 mA cm-2, which is comparable to the activity of commercial Ir/C (281 mV@20 mA cm-2). These findings could provide opportunities for designing effective and inexpensive composite electrocatalysts through nanointerface engineering strategy.
Collapse
Affiliation(s)
- Haitao Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dianhua Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jiao Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ruijie Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jingzhe Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|