1
|
Zhang W, Shahnavaz Z, Yan X, Huang X, Wu S, Chen H, Pan J, Li T, Wang J. One-Step Solvothermal Synthesis of Raspberry-like NiCo-MOF for High-Performance Flexible Supercapacitors for a Wide Operation Temperature Range. Inorg Chem 2022; 61:15287-15301. [PMID: 36083865 DOI: 10.1021/acs.inorgchem.2c02916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As a novel electrode material for energy storage, metal-organic frameworks (MOFs) emerge with plenty of merits and certain drawbacks in the field of supercapacitors. Nevertheless, most MOFs synthesized for the moment are faced with dimension/distribution issues and dissatisfactory electrical conductivity. Hence, in this paper, NiCo-MOF was successfully fabricated by applying a one-step solvothermal method, from which NiCo-MOF-3 presents an optimal electrochemical performance compared to other NiCo-MOFs and Ni/Co-MOF. Owing to its unique three-dimensional spherical raspberry structure, NiCo-MOF-3 demonstrates an available internal resistance and electron transfer resistance to ameliorate electrical energy storage, exhibiting an excellent mass specific capacitance of 639.8 F/g at 1 A/g. Then, a flexible quasi-solid-state asymmetric supercapacitor was assembled with NiCo-MOF-3 as the positive electrode. The introduction of K3[Fe(CN)6] and glycerin in the gel electrolyte facilitates the maximum energy density of 66.3 Wh/kg of the device, with a corresponding power density reaching its maximum of 12,047 W/kg. The device's apparent energy density, excellent flexibility, and temperature resistance reveal that our method to prepare supercapacitor electrode material possesses more advantages than those in the former literature.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Zohreh Shahnavaz
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Xuehua Yan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China.,Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Xinpeng Huang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Sutang Wu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Hao Chen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Jianmei Pan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Tie Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, P. R. China
| | - Jiapeng Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
2
|
Cao Z, Momen R, Tao S, Xiong D, Song Z, Xiao X, Deng W, Hou H, Yasar S, Altin S, Bulut F, Zou G, Ji X. Metal-Organic Framework Materials for Electrochemical Supercapacitors. NANO-MICRO LETTERS 2022; 14:181. [PMID: 36050520 PMCID: PMC9437182 DOI: 10.1007/s40820-022-00910-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems. Metal-organic frameworks (MOFs), as a new type of porous material, show the advantages of large specific surface area, high porosity, low density, and adjustable pore size, exhibiting a broad application prospect in the field of electrocatalytic reactions, batteries, particularly in the field of supercapacitors. This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials, as well as their applications in supercapacitors. Additionally, the superiorities of MOFs-related materials are highlighted, while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed, along with extensive experimental experiences.
Collapse
Affiliation(s)
- Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Roya Momen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Zirui Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Sedat Yasar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Battalgazi, Malatya, Turkey
| | - Sedar Altin
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Faith Bulut
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
5
|
Cao Y, Tang P, Qiu W, Zhao T. Preparation of Y-Doped La 2Ti 2O 7 Flexible Self-Supporting Films and Their Application in High-Performance Flexible All-Solid-State Supercapacitor Devices. ACS OMEGA 2020; 5:29722-29732. [PMID: 33251408 PMCID: PMC7689658 DOI: 10.1021/acsomega.0c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
Flexible all-solid-state supercapacitors have drawn more attention owing to the rapid growth of wearable electronic equipments. Herein, we have succeeded in synthesizing a series of Y-doped lanthanum titanate flexible self-supporting films (LSF-x, 0.1 ≤ x ≤ 0.5) and investigating the change of microstructures, morphological characteristics, and lattice structures of these films affected by different Y-doping contents. To further determine the optimum Y-doping content, we have explored the electrochemical properties of working electrodes prepared by LSF-x (0.1 ≤ x ≤ 0.5) samples as the main active material. As the LSF-0.2 electrode has the best areal capacitance of 1.3 F·cm-2 at 2 mA·cm-2, we use the LSF-0.2 electrodes and PVA-Na2SO4 gel to fabricate a flexible all-solid-state supercapacitor device. This device has a high areal capacitance of 255.9 mF·cm-2 at a current density of 2 mA·cm-2 with a high cell voltage of 2.1 V, while the corresponding energy density is 156.8 μWh·cm-2 with a power density of 2.1 mW·cm-2. Moreover, it also shows a long cycling life and outstanding flexibility. Therefore, the LSF-0.2 sample can be used as an excellent energy-storage material for a wearable electronic device.
Collapse
Affiliation(s)
- Yi Cao
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Peiyuan Tang
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wenfeng Qiu
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Tong Zhao
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
- Laboratory
of Advanced Polymeric Materials, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|