1
|
Lopes V, Abreu T, Abrantes M, Nemala SS, De Boni F, Prato M, Alpuim P, Capasso A. Graphene-Based Glucose Sensors with an Attomolar Limit of Detection. J Am Chem Soc 2025; 147:13059-13070. [PMID: 40179421 DOI: 10.1021/jacs.5c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Diabetes mellitus, a prevalent metabolic disorder affecting hundreds of millions of people worldwide, demands continuous glucose monitoring for effective management. Current blood glucose monitoring methods, such as commercial glucometers, are accurate but are often perceived as uncomfortable. Motivated by the need for noninvasive, ultrasensitive alternatives, our study presents electrolyte-gated graphene field-effect transistors functionalized with glucose oxidase. We developed an optimized fabrication process that integrates a 32-transistor matrix within a miniaturized 1000 μm2 footprint, ensuring high device uniformity while enabling detection in 40 μL analyte volume. A comprehensive suite of techniques─including Raman spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurements─reveals the stepwise evolution of graphene chemistry and surface properties leading to the controlled immobilization of glucose oxidase. Our findings demonstrate p-type doping and tensile strain in the graphene channel across the nanomolar-millimolar glucose concentration range. The enzyme-catalyzed oxidation of glucose produces hydrogen peroxide in close proximity to the graphene channel, inducing a systematic shift in the Dirac point voltage toward more positive values. Under these conditions, the biosensor achieves an attomolar limit of detection and a sensitivity of 10.6 mV/decade, outperforming previously reported glucose sensors. Selectivity tests against common interferents such as lactate and ascorbic acid, as well as validation in artificial and human tears, demonstrate its robustness for real-world applications. Altogether, these findings position the electrolyte-gated graphene field-effect transistor as a transformative, noninvasive glucose-sensing platform, paving the way for next-generation continuous monitoring devices, including wearable formats for real-time, user-friendly diabetes management.
Collapse
Affiliation(s)
- Vicente Lopes
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Tiago Abreu
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal
| | - Mafalda Abrantes
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal
| | - Siva Sankar Nemala
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Francesco De Boni
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| |
Collapse
|
2
|
Nepal RC, Seven ES, Leblanc RM, Chusuei CC. An Electrochemical Dopamine Assay with Cobalt Oxide Palatinose Carbon Dots. Molecules 2025; 30:413. [PMID: 39860284 PMCID: PMC11767566 DOI: 10.3390/molecules30020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs). Co3O4 nanoparticles (NPs) were encapsulated by the CDs. Cyclic (CV) and linear sweep (LSV) voltammetry measurements were obtained, drop-casting the CDs onto GCEs and measuring DA in a phosphate-buffer solution (pH = 7). DA had an oxidation peak at +0.2 V with SucCDs, with the highest current correlating with the highest defect density. PalCD-Co3O4 exhibited the largest signal for DA detection in simulated urine (SU) using the oxidation peak at +0.5 V; the composite had a lower defect density compared to SucCD-Co3O4. The Co3O4-PalCDs had a DA detection range of 1 to 90 µM with an LOD of 0.88 μM in SU. SEM-EDX analysis of the electrode surface revealed semi-spherical structures with an average particle diameter of 80 ± 19 nm (n = 347) with PalCDs decorating the Co3O4 NPs. XRD characterization showed the incorporation of PalCD and Co3O4 within the composite. XPS showed electron density donation from the PalCD to Co3O4.
Collapse
Affiliation(s)
- Ram Chandra Nepal
- Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA;
| | - Elif S. Seven
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA; (E.S.S.); (R.M.L.)
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA; (E.S.S.); (R.M.L.)
| | - Charles C. Chusuei
- Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA;
| |
Collapse
|
3
|
Kanagavalli P, Eissa S. Exploring various carbon nanomaterials-based electrodes modified with polymelamine for the reagentless electrochemical immunosensing of Claudin18.2. Biosens Bioelectron 2024; 259:116388. [PMID: 38761744 DOI: 10.1016/j.bios.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Claudin18.2 (CLDN18.2) is a tight junction protein often overexpressed in various solid tumors, including gastrointestinal and esophageal cancers, serving as a promising target and potential biomarker for tumor diagnosis, treatment assessment, and prognosis. Despite its significance, no biosensor has been reported to date for the detection of CLDN18.2. Here, we present the inaugural immunosensor for CLDN18.2. In this study, an amine-rich conducting polymer of polymelamine (PM) was electrografted onto different carbon nanomaterial-based screen-printed electrodes (SPEs), including carbon (C), graphene (Gr), graphene oxide (GO), carbon nanotube (CNT), and carbon nanofiber (CNF) via cyclic voltammetry. A comparative study was performed to explore the best material for the preparation of the PM-modified electrodes to be used as in-situ redox substrate for the immunosensor fabrication. The surface chemistry and structural features of pristine and PM-deposited electrodes were analyzed using Raman and scanning electron microscopy (SEM) techniques. Our results showed that the PM deposited on Gr and CNT/SPEs exhibited the most significant and stable redox behavior in PBS buffer. The terminal amine moieties on the PM-modified electrode surfaces were utilized for immobilizing anti-CLDN18.2 monoclonal antibodies via N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide chemistry to construct the electrochemical immunosensor platform. Differential pulse voltammetry-based immunosensing of CLDN18.2 protein on BSA/anti-CLDN18.2/PM-Gr/SPE and BSA/anti-CLDN18.2/PM-CNT/SPE exhibited excellent selectivity against other proteins such as CD1, PDCD1, and ErBb2. The limits of detection of these two immunosensor platforms were calculated to be 7.9 pg/mL and 0.104 ng/mL for the CNT and Gr immunosensors, respectively. This study demonstrated that the PM-modified Gr and CNT electrodes offer promising platforms not only for the reagentless signaling but also for covalent immobilization of biomolecules. Moreover, these platforms offer excellent sensitivity and selectivity for the detection of CLDN18.2 due to its enhanced stable redox activity. The immunosensor demonstrated promising results for the sensitive detection of CLDN18.2 in biological samples, addressing the critical need for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Pandiyaraj Kanagavalli
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
4
|
Babar M, Viswanathan V. Modeling Scanning Electrochemical Cell Microscopy (SECCM) in Twisted Bilayer Graphene. J Phys Chem Lett 2024; 15:7371-7378. [PMID: 38995158 DOI: 10.1021/acs.jpclett.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Twisted 2D-flat band materials host exotic quantum phenomena and novel moiré patterns, showing immense promise for advanced spintronic and quantum applications. Here, we evaluate the nanostructure-activity relationship in twisted bilayer graphene by modeling it under the scanning electrochemical cell microscopy setup to resolve its spatial moiré domains. We solve the steady state ion transport inside a 3D nanopipette to isolate the current response at AA and AB domains. Interfacial reaction rates are obtained from a modified Marcus-Hush-Chidsey theory combining input from a tight binding model that describes the electronic structure of bilayer graphene. High rates of redox exchange are observed at the AA domains, an effect that reduces with diminished flat bands or a larger cross-sectional area of the nanopipette. Using voltammograms, we identify an optimal voltage that maximizes the current difference between the domains. Our study lays down the framework to electrochemically capture prominent features of the band structure that arise from spatial domains and deformations in 2D flat-band materials.
Collapse
Affiliation(s)
- Mohammad Babar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Venkatasubramanian Viswanathan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Babar M, Zhu Z, Kurchin R, Kaxiras E, Viswanathan V. Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene. J Am Chem Soc 2024; 146:16105-16111. [PMID: 38829312 PMCID: PMC11177310 DOI: 10.1021/jacs.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
In this work, we develop a twist-dependent electrochemical activity map, combining a low-energy continuum electronic structure model with modified Marcus-Hush-Chidsey kinetics in trilayer graphene. We identify a counterintuitive rate enhancement region spanning the magic angle curve and incommensurate twists in the system geometry. We find a broad activity peak with a ruthenium hexamine redox couple in regions corresponding to both magic angles and incommensurate angles, a result qualitatively distinct from the twisted bilayer case. Flat bands and incommensurability offer new avenues for reaction rate enhancements in electrochemical transformations.
Collapse
Affiliation(s)
- Mohammad Babar
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziyan Zhu
- Stanford
Institute of Materials and Energy Science, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Rachel Kurchin
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Efthimios Kaxiras
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
7
|
Kislenko VA, Pavlov SV, Nikitina VA, Kislenko SA. Revision of the oxygen reduction reaction on N-doped graphenes by grand-canonical DFT. Phys Chem Chem Phys 2023; 26:293-303. [PMID: 38060245 DOI: 10.1039/d3cp04517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Nitrogen-doped graphenes were among the first promising metal-free carbon-based catalysts for the oxygen reduction reaction (ORR). However, data on the most efficient catalytic centers and their catalytic mechanisms are still under debate. In this work, we study the associative mechanism of the ORR in an alkaline medium on graphene containing various types of nitrogen doping. The free energy profile of the reaction is constructed using grand-canonical DFT at a constant electrode potential in combination with an implicit electrolyte model. It is shown that the reaction mechanism differs from the generally accepted one and depends on the surface potential and doping type. In particular, as the potential decreases, coupled electron-proton transfer changes to sequential electron and proton transfer, and the potential at which this occurs depends on the doping type. It has been shown that oxygen chemisorption is the limiting step. The electrocatalytic mechanism of the nitrogen dopants involves reducing the oxygen chemisorption energy. Calculations predict that, at different potentials, different types of nitrogen impurities most effectively catalyze the ORR.
Collapse
Affiliation(s)
- Vitaliy A Kislenko
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey V Pavlov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Victoria A Nikitina
- Skolkovo Institute of Science and Technology (Skoltech), Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
| | - Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
8
|
Bianco F, Corte E, Ditalia Tchernij S, Forneris J, Fabbri F. Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:739. [PMID: 36839108 PMCID: PMC9960900 DOI: 10.3390/nano13040739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Recently, hBN has become an interesting platform for quantum optics due to the peculiar defect-related luminescence properties. In this work, multicolor radiative emissions are engineered and tailored by position-controlled low-energy electron irradiation. Varying the irradiation parameters, such as the electron beam energy and/or area dose, we are able to induce light emissions at different wavelengths in the green-red range. In particular, the 10 keV and 20 keV irradiation levels induce the appearance of broad emission in the orange-red range (600-660 nm), while 15 keV gives rise to a sharp emission in the green range (535 nm). The cumulative dose density increase demonstrates the presence of a threshold value. The overcoming of the threshold, which is different for each electron beam energy level, causes the generation of non-radiative recombination pathways.
Collapse
Affiliation(s)
- Federica Bianco
- NEST Laboratory, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Emilio Corte
- Physics Department, University of Torino and Istituto Nazionale di Fisica Nucleare Sez. Torino, Via P. Giuria 11, 10125 Torino, Italy
| | - Sviatoslav Ditalia Tchernij
- Physics Department, University of Torino and Istituto Nazionale di Fisica Nucleare Sez. Torino, Via P. Giuria 11, 10125 Torino, Italy
| | - Jacopo Forneris
- Physics Department, University of Torino and Istituto Nazionale di Fisica Nucleare Sez. Torino, Via P. Giuria 11, 10125 Torino, Italy
| | - Filippo Fabbri
- NEST Laboratory, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
9
|
Pavlov S, Kozhevnikova E, Kislenko S. Effect of the number of graphene layers on the electron transfer kinetics at metal/graphene heterostructures. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Pavlov SV, Kozhevnikova YO, Kislenko VA, Kislenko SA. Modulation of the kinetics of outer-sphere electron transfer at graphene by a metal substrate. Phys Chem Chem Phys 2022; 24:25203-25213. [PMID: 36254968 DOI: 10.1039/d2cp03771h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Solid-supported graphene is a typical configuration of electrochemical devices based on single-layer graphene. Therefore, it is necessary to understand the electrochemical features of such heterostructures. In this work, we theoretically investigated the effect of the metal type on the nonadiabatic electron transfer (ET) at the metal-supported graphene using DFT calculations. We considered five metals Au, Ag, Pt, Cu, and Al on which graphene is physically adsorbed. It is shown that all metals catalyze the ET. The electrocatalytic effect increases in the following series Al < Au ≲ Ag ≈ Cu < Pt. The enhanced ET in the presence of the metal substrate is explained by the hybridization of metal and graphene states, due to which the coupling between the reactant in an electrolyte and metal is increased. Metal-dependent electrocatalytic effect is explained both by different densities of states at the Fermi level of the systems and by differences in the behaviour of the tails of hybridized wave functions in the electrolyte region. The shift of the Fermi level with respect to the Dirac point in graphene when charging at the metal/graphene/electrolyte interface does not affect the kinetics due to the small contribution of graphene states to the electron transfer.
Collapse
Affiliation(s)
- Sergey V Pavlov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Yekaterina O Kozhevnikova
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Vitaliy A Kislenko
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
11
|
Pavlov SV, Kislenko VA, Kislenko SA. Effect of a Graphene Vacancy on the Kinetics of Heterogeneous Electron Transfer. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s0018143922050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu Z, Navik R, Tan H, Xiang Q, Wahyudiono, Goto M, Ibarra RM, Zhao Y. Graphene-based materials prepared by supercritical fluid technology and its application in energy storage. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Inozemtseva AI, Sergeev AV, Napolskii KS, Kushnir SE, Belov V, Itkis DM, Usachov DY, Yashina LV. Graphene electrochemistry: ‘Adiabaticity’ of electron transfer. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Review—Recent Progress in Graphene Based Modified Electrodes for Electrochemical Detection of Dopamine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Graphene and its derivatives have been widely used for the electrochemical detection of dopamine (DA) neurotransmitter, thanks to its high surface area and excellent conductivity. Modified graphene and graphene-based nanocomposites have shown improved catalytic activity towards DA detection. Various modification approaches have been taken, including heteroatom doping and association with other nanomaterials. This review summarizes and highlights the recent advances in graphene-based electrodes for the electrochemical detection of DA. It also aims to provide an overview of the advantages of using polymer as a linker platform to form graphene-based nanocomposites applied to electrochemical DA sensors.
Collapse
|
15
|
Jindra M, Velický M, Bouša M, Abbas G, Kalbáč M, Frank O. Localized Spectroelectrochemical Identification of Basal Plane and Defect-Related Charge-Transfer Processes in Graphene. J Phys Chem Lett 2022; 13:642-648. [PMID: 35020405 DOI: 10.1021/acs.jpclett.1c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well-known that structural defects play a decisive role in electrochemical behavior of atomically thin materials, where all the defects are directly accessible by the electrolyte. However, the vast majority of experimental techniques do not allow disentanglement of the processes at the edges/defects from those at the intact basal plane. Therefore, to address this issue, we introduce a localized spectroelectrochemical method featuring a microdroplet electrochemical cell with simultaneous Raman spectroscopy monitoring. The electrochemical and spectral responses of the basal planes of monolayer graphene samples with varying levels of disorder were compared. Two contributions, stemming from the intact and defective areas on the surface, respectively, were discovered both in the Raman G band shifts and cyclic voltammetry using the hexaammineruthenium complex. Consequently, two independent electron transfer processes of slower and faster rates coexist in one sample, but they are restricted to the defect-free and defect-rich areas, respectively.
Collapse
Affiliation(s)
- Martin Jindra
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Department of Physical Chemistry, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Matěj Velický
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Department of Physics and Astronomy, University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Milan Bouša
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Ghulam Abbas
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Department of Physical Chemistry and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Martin Kalbáč
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Otakar Frank
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
16
|
Kislenko SA, Pavlov SV, Nazmutdinov RR, Kislenko VA, Chekushkin PM. Effect of a Au underlayer on outer-sphere electron transfer across a Au/graphene/electrolyte interface. Phys Chem Chem Phys 2021; 23:22984-22991. [PMID: 34611675 DOI: 10.1039/d1cp03051e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effect of a gold underlayer on the outer-sphere non-adiabatic electron transfer on a graphene surface is investigated theoretically using both periodic and cluster DFT calculations. We propose a model that describes the alignment of energy levels and charge redistribution at the metal/graphene/redox electrolyte interface. Model calculations were performed for the [Fe(CN)6]3-/4- and [Ru(NH3)6]3+/2+ redox couples. It is shown that the gold support increases the rate constant of electron transfer. Gold electronic states hybridize with graphene wave functions, which provides an effective overlap with reactant orbitals outside the graphene layer and favors an increasing reaction rate. Although the Fermi level shift relative to the Dirac point in graphene depends significantly on the redox couple, this weakly affects the electron transfer kinetics at the Au(111)/graphene/electrolyte interface due to a small contribution of graphene states to the rate constant as compared to gold ones.
Collapse
Affiliation(s)
- Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey V Pavlov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Renat R Nazmutdinov
- Kazan National Research Technological University, R. Marx Str. 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Vitaliy A Kislenko
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Petr M Chekushkin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
17
|
Chusuei CC, Clark CJ, Pandey RR, Williams ET, Shuxteau C, Seven ES, Leblanc RM. Graphene Defects in Saccharide Carbon Dots Govern Electrochemical Sensitivity. ELECTROANAL 2021. [DOI: 10.1002/elan.202100381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charles C. Chusuei
- Department of Chemistry Middle Tennessee State University 440 Friendship Street Murfreesboro TN 37132 USA
| | - Christopher J. Clark
- Department of Chemistry Middle Tennessee State University 440 Friendship Street Murfreesboro TN 37132 USA
| | - Raja Ram Pandey
- Department of Chemistry Middle Tennessee State University 440 Friendship Street Murfreesboro TN 37132 USA
| | - Ethan T. Williams
- Department of Chemistry Middle Tennessee State University 440 Friendship Street Murfreesboro TN 37132 USA
| | - Carissa Shuxteau
- Department of Chemistry Middle Tennessee State University 440 Friendship Street Murfreesboro TN 37132 USA
| | - Elif S. Seven
- Department of Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146 USA
| | - Roger M. Leblanc
- Department of Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146 USA
| |
Collapse
|
18
|
Wang TP, Lee CL, Kuo CH, Kuo WC. Potential-induced sonoelectrochemical graphene nanosheets with vacancies as hydrogen peroxide reduction catalysts and sensors. ULTRASONICS SONOCHEMISTRY 2021; 72:105444. [PMID: 33387760 PMCID: PMC7803930 DOI: 10.1016/j.ultsonch.2020.105444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Defective graphene nanosheets (dGN4V) with 5-9, 5-8-5, and point defects were synthesised by a sonoelectrochemical method, where a potential of 4 V (vs. Ag/AgCl) was applied to drive the rapid intercalation of phosphate ions between the layers of the graphite foil as a working electrode. In addition to these vacancies, double vacancy defects were also created when the applied potential was increased to 8 V (dGN8V). The defect density of dGN8V (2406 μm-2) was higher than that of dGN4V (1786 μm-2). Additionally, dGN8V and dGN4V were applied as catalysts for the hydrogen peroxide reduction reaction (HPRR). The mass activity of dGN8V (1.31 × 10-2 mA·μg-1) was greater than that of dGN4V (1.17 × 10-2 mA·μg-1) because of its high electrochemical surface area (ECSA, 1250.89 m2·g-1) and defect density (ND, 2406 μm-2), leading to low charge transfer resistance on the electrocatalytic interface. The ECSA and ND of dGN4V were 502.7 m2·g-1 and 1786 μm-2, respectively. Apart from its remarkable HPRR activity, the cost-effective dGN8V catalyst also showed potential as an amperometric sensor for the determination of H2O2.
Collapse
Affiliation(s)
- Tzu-Pei Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Chien-Liang Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Wen-Cheng Kuo
- Department of Mechatronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Controlling assembly-induced single layer RGO to achieve highly sensitive electrochemical detection of Pb(II) via synergistic enhancement. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Komeily-Nia Z, Qu LT, Li JL. Progress in the Understanding and Applications of the Intrinsic Reactivity of Graphene‐Based Materials. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Zahra Komeily-Nia
- Institute for Frontier Materials Deakin University Geelong Victoria 3217 Australia
| | - Liang-Ti Qu
- Department of Chemistry Tsinghua University Beijing 100081 P. R. China
| | - Jing-Liang Li
- Institute for Frontier Materials Deakin University Geelong Victoria 3217 Australia
| |
Collapse
|
21
|
Brownson DAC, Garcia-Miranda Ferrari A, Ghosh S, Kamruddin M, Iniesta J, Banks CE. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. NANOSCALE ADVANCES 2020; 2:5319-5328. [PMID: 36132042 PMCID: PMC9417807 DOI: 10.1039/d0na00587h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/06/2020] [Indexed: 05/04/2023]
Abstract
The electrochemical response of different morphologies (microstructures) of vertically aligned graphene (VG) configurations is reported. Electrochemical properties are analysed using the outer-sphere redox probes Ru(NH3)6 2+/3+ (RuHex) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), with performances de-convoluted via accompanying physicochemical characterisation (Raman, TEM, SEM, AFM and XPS). The VG electrodes are fabricated using an electron cyclotron resonance chemical vapour deposition (ECR-CVD) methodology, creating vertical graphene with a range of differing heights, spacing and edge plane like-sites/defects (supported upon underlying SiO2/Si). We correlate the electrochemical reactivity/response of these novel VG configurations with the level of edge plane sites (%-edge) comprising their structure and calculate corresponding heterogeneous electron transfer (HET) rates, k 0. Taller VG structures with more condensed layer stacking (hence a larger global coverage of exposed edge plane sites) are shown to exhibit improved HET kinetics, supporting the claims that edge plane sites are the predominant source of electron transfer in carbon materials. A measured k 0 eff of ca. 4.00 × 10-3 cm s-1 (corresponding to an exposed surface coverage of active edge plane like-sites/defects (% θ edge) of 1.00%) was evident for the tallest and most closely stacked VG sample, with the inverse case true, where a VG electrode possessing large inter-aligned-graphene spacing and small flake heights exhibited only 0.08% of % θ edge and a k 0 eff value one order of magnitude slower at ca. 3.05 × 10-4 cm s-1. Control experiments are provided with conventional CVD (horizontal) grown graphene and the edge plane of highly ordered pyrolytic graphite (EPPG of HOPG), demonstrating that the novel VG electrodes exhibit ca. 3× faster k 0 than horizontal CVD graphene. EPPG exhibited the fastest HET kinetics, exhibiting ca. 2× larger k 0 than the best VG. These results are of significance to those working in the field of 2D-carbon electrochemistry and materials scientists, providing evidence that the macroscale electrochemical response of carbon-based electrodes is dependent on the edge plane content and showing that a range of structural configurations can be employed for tailored properties and applications.
Collapse
Affiliation(s)
- Dale A C Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476561 +44 (0)1612471196
| | - Alejandro Garcia-Miranda Ferrari
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476561 +44 (0)1612471196
| | - Subrata Ghosh
- Materials Science Group, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India
- Department of Materials, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Mohammed Kamruddin
- Materials Science Group, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India
| | - Jesús Iniesta
- Physical Chemistry Department, Institute of Electrochemistry, University of Alicante 03690 San Vicente del Raspeig Alicante Spain
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476561 +44 (0)1612471196
| |
Collapse
|
22
|
Zhang T, Li Z, Wang L, Zhang S, Liu Y, Niu X. Highly Exposed Active Sites of Fe/N Co-doped Defect-rich Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chem Asian J 2020; 15:3527-3534. [PMID: 32964661 DOI: 10.1002/asia.202000903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Indexed: 11/09/2022]
Abstract
A defect-rich interconnected hierarchical three-dimensional Fe and N co-doped graphene has been prepared by a facile synthesis with poly (2,5-benzimidazole) (ABPBI) as nitrogen and carbon sources and CaCO3 as the template. ABPBI possesses abundant nitrogen, and pyrolysis of ABPBI is helpful to form graphene structure. CaCO3 and its decomposition products CO2 can promote the formation of interconnected hierarchical porous three-dimensional graphene, which possesses more defects and exposed active sites. Benefiting from the defective catalysis mechanism, rich defect catalysts are applied as electrode materials to enhance the catalytic performance for oxygen reduction reaction (ORR). Electrochemically, the half-wave potential (E1/2 ) of Fe-3D-NG#800 is 0.84 V (vs. RHE), and the accelerated durability tests shows the E1/2 of Fe-3D-NG#800 shifted by a 21 mV drop after cyclic voltammetry scanning for 5000 cycles. Therefore, Fe-3D-NG#800 has excellent activity and durability than 20 wt % Pt/C.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China.,School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007, P. R. China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Shenzhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yuepeng Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| |
Collapse
|
23
|
Khossossi N, Singh D, Ainane A, Ahuja R. Recent progress of defect chemistry on 2D materials for advanced battery anodes. Chem Asian J 2020; 15:3390-3404. [PMID: 32846029 PMCID: PMC7702035 DOI: 10.1002/asia.202000908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The rational design of anode materials plays a significant factor in harnessing energy storage. With an in-depth insight into the relationships and mechanisms that underlie the charge and discharge process of two-dimensional (2D) anode materials. The efficiency of rechargeable batteries has significantly been improved through the implementation of defect chemistry on anode materials. This mini review highlights the recent progress achieved in defect chemistry on 2D materials for advanced rechargeable battery electrodes, including vacancies, chemical functionalization, grain boundary, Stone Wales defects, holes and cracks, folding and wrinkling, layered von der Waals (vdW) heterostructure in 2D materials. The defect chemistry on 2D materials provides numerous features such as a more active adsorption sites, great adsorption energy, better ions-diffusion and therefore higher ion storage, which enhances the efficiency of the battery electrode.
Collapse
Affiliation(s)
- Nabil Khossossi
- Condensed Matter Theory GroupMaterials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
- Laboratoire de Physique des Matèriaux et Modélisations des SystèmesLP2MS)Faculty of SciencesDepartment of PhysicsMoulay Ismail UniversityMeknesMorocco
| | - Deobrat Singh
- Condensed Matter Theory GroupMaterials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
| | - Abdelmajid Ainane
- Condensed Matter Theory GroupMaterials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
- Laboratoire de Physique des Matèriaux et Modélisations des SystèmesLP2MS)Faculty of SciencesDepartment of PhysicsMoulay Ismail UniversityMeknesMorocco
| | - Rajeev Ahuja
- Condensed Matter Theory GroupMaterials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
- Applied Materials PhysicsDepartment of Materials Science and EngineeringRoyal Institute of Technology (KTH)S-100 44StockholmSweden
- Condensed Matter Theory GroupMaterials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityBox 51675120UppsalaSweden
| |
Collapse
|