1
|
Liu Q, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Chemistry 2024; 30:e202400157. [PMID: 38520385 DOI: 10.1002/chem.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
2
|
Akbar H, Ali A, Mohammad S, Anjum F, Ahmad A, Afzal AM, Albaqami MD, Mohammad S, Choi JR. Exploring the Potential of Nitrogen-Doped Graphene in ZnSe-TiO 2 Composite Materials for Supercapacitor Electrode. Molecules 2024; 29:2103. [PMID: 38731594 PMCID: PMC11085058 DOI: 10.3390/molecules29092103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The current study explores the prospective of a nitrogen-doped graphene (NG) incorporated into ZnSe-TiO2 composites via hydrothermal method for supercapacitor electrodes. Structural, morphological, and electronic characterizations are conducted using XRD, SEM, Raman, and UV analyses. The electrochemical study is performed and galvanostatic charge-discharge (GCD) and cyclic voltammetry (CV) are evaluated for the supercapacitor electrode material. Results demonstrate improved performance in the ZnSe-NG-TiO2 composite, indicating its potential for advanced supercapacitors with enhanced efficiency, stability, and power density. Specific capacity calculations and galvanic charge-discharge experiments confirmed the promising electrochemical activity of ZnSe-NG-TiO2, which has a specific capacity of 222 C/g. The negative link among specific capacity and current density demonstrated the composite's potential for high energy density and high-power density electrochemical devices. Overall, the study shows that composite materials derived from multiple families can synergistically improve electrode characteristics for advanced energy storage applications.
Collapse
Affiliation(s)
- Hassan Akbar
- Department of Physics, Abbottabad University of Science and Technology (AUST), Havelian Havelian, Abbottabad 22500, Pakistan;
| | - Asghar Ali
- Pakistan Department of Physics, The University of Lahore, 1-km, Defense Road, Lahore 54000, Pakistan;
| | - Shoaib Mohammad
- Department of Mechanical Engineering, University of Engineering and Applied Sciences, Swat 19201, Pakistan;
| | - Faiza Anjum
- Pakistan Department of Physics, The University of Lahore, 1-km, Defense Road, Lahore 54000, Pakistan;
| | - Ashfaq Ahmad
- School of Material Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Amir Muhammad Afzal
- Pakistan Department of Physics, Riphah International University, Lahore 54000, Pakistan;
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.D.A.); (S.M.)
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.D.A.); (S.M.)
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Yeongtong-gu, Suwon 16227, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Ali S, Hassan H, Iqbal MW, Afzal AM, Amin MA, Alhadrami A, Alqarni ND, Umar E. Analyzing synthesis routes for BaCuPO 4: implications for hydrogen evolution and supercapattery performance. RSC Adv 2023; 13:35468-35480. [PMID: 38058556 PMCID: PMC10696637 DOI: 10.1039/d3ra07596f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
In recent years, energy storage and conversion tools have evolved significantly in response to rising energy demands. Owing to their large surface area, superior electric and chemical stabilities, and thermal conductivities, barium copper phosphate (BaCuPO4) materials are promising electrode materials for electrochemical energy storage systems. In this study, the synthesis of nanostructures (NSs) using hydrothermal and chemical precipitation methods and exploring the electrochemical characteristics of BaCuPO4 in asymmetric supercapacitors provides a comparative investigation. Systematic characterization shows that nanomaterials prepared by applying the hydrothermal method have a more crystalline and large surface area than chemical precipitation. In the three cell arrangements, the hydrothermally prepared BaCuPO4 NSs delivered a high specific capacity (764.4 C g-1) compared to the chemical precipitation route (660 C g-1). Additionally, the supercapattery associated with the two electrode assemblages delivers an optimum specific capacity of 77 C g-1. The energy and power density of BaCuPO4//AC NSs were 52.13 W h kg-1 and 950 W kg-1, respectively. A durability test was also performed with BaCuPO4//AC NSs for 5000 consecutive cycles. Further, the coulombic efficiency and capacity retention of BaCuPO4//AC after 5000 cycles were 81% and 92%, respectively. Bimetallic phosphate is comparatively suggested for future perspectives towards HER to overcome the performance of single metal phosphate materials. This is the first approach, we are aware of, for investigating the electrochemical behavior of BaCuPO4, and our results suggest that it may be useful as an electrode material in electrochemical systems requiring high energy and rate capabilities.
Collapse
Affiliation(s)
- Sarfraz Ali
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Haseebul Hassan
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | - Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif Saudi Arabia
| | - A Alhadrami
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif Saudi Arabia
| | - Nawal D Alqarni
- Department of Chemistry, College of Science, University of Bisha Bisha 61922 Saudi Arabia
| | - Ehtisham Umar
- Department of Physics, Government College University Lahore 54000 Punjab Pakistan
| |
Collapse
|
4
|
Ghanem RM, Kospa DA, Ahmed AI, Ibrahim AA, Gebreil A. Construction of thickness-controllable bimetallic sulfides/reduced graphene oxide as a binder-free positive electrode for hybrid supercapacitors. RSC Adv 2023; 13:29252-29269. [PMID: 37809023 PMCID: PMC10551804 DOI: 10.1039/d3ra05326a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023] Open
Abstract
Devices for electrochemical energy storage with exceptional capacitance and rate performance, outstanding energy density, simple fabrication, long-term stability, and remarkable reversibility have always been in high demand. Herein, a high-performance binder-free electrode (3D NiCuS/rGO) was fabricated as a supercapacitor by a simple electrodeposition process on a Ni foam (NF) surface. The thickness of the deposited materials on the NF surface was adjusted by applying a low cycle number of cyclic voltammetry (5 cycles) which produced a thin layer and thus enabled the easier penetration of electrolytes to promote electron and charge transfer. The NiCuS was anchored by graphene layers producing nicely integrated materials leading to a higher electroconductivity and a larger surface area electrode. The as-fabricated electrode displayed a high specific capacitance (2211.029 F g-1 at 5 mV s-1). The NiCuS/rGO/NF//active carbon device can achieve a stable voltage window of 1.5 V with a highly specific capacitance of 84.3 F g-1 at a current density of 1 A g-1. At a power density of 749 W kg-1, a satisfactory energy density of 26.3 W h kg-1 was achieved, with outstanding coulombic efficiency of 100% and an admirable life span of 96.2% after 10 000 GCD cycles suggesting the significant potential of the as-prepared materials for practical supercapacitors.
Collapse
Affiliation(s)
- Ramage M Ghanem
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Awad I Ahmed
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Ahmed Gebreil
- Nile Higher Institutes of Engineering and Technology El-Mansoura Egypt
| |
Collapse
|
5
|
Batool K, Rani M, Rasool F, Karami AM, Sillanpää M, Shafique R, Akram M, Sohail A. Multinary nanocomposite of GO@SrO@CoCrO 3@FeCr 2O 4@SnO 2@SiO 2 for superior electrochemical performance and water purification applications. Heliyon 2023; 9:e20675. [PMID: 37842602 PMCID: PMC10569995 DOI: 10.1016/j.heliyon.2023.e20675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Novel multinary nanocomposite using solvothermal method synthesized and studied for their use in supercapacitors and photocatalysis to degrade pollutants using characterization techniques XRD, SEM, EDX, FTIR, Raman, UV-Vis, Zeta potential and photoluminescence spectroscopy whereas electrochemical testing via EIS, CV and GCD analysis. Average crystalline size of 20.81 nm measured from XRD whereas EDX confirms GO suppression within nanocomposite. Mixed matrix like morphology is observable from SEM micrographs. The composite exhibited a band gap of 2.78 eV that could degrade MB dye at 94 % under direct sunlight consistent with first-order kinetics. Multiple distinctive peaks in FTIR spectra indicates various functional groups exsistence in the material alongwith zeta potential value of -17.9 mV. Raman spectra reveals D-band shifting to value 1361 cm-1 while the G-band shifts to 1598 cm-1 relative to GO. Furthermore electrochemical performance evaluated revealing electron transfer rate value 4.88 × 10-9 cms-1 with maximum capacitance about 7182 Fg-1 at a scan rate of 10 mVs-1 respectively. Power density ranges from 3591.18 to 2163 W/kg and energy density from 299 to 120 Wh/Kg as measured from GCD analysis. These findings indicates that novel multinary nanocomposite holds potential as an electrode material in supercapacitors and as a sunlight-driven photocatalyst for the degradation of water-borne organic pollutants.
Collapse
Affiliation(s)
- Kiran Batool
- Department of Physics, The Women University, P.O. Box 66000, Multan, Pakistan
| | - Malika Rani
- Department of Physics, The Women University, P.O. Box 66000, Multan, Pakistan
| | - Faisal Rasool
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Abdulnasser M. Karami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000, Aarhus C, Denmark
| | - Rubia Shafique
- Department of Physics, The Women University, P.O. Box 66000, Multan, Pakistan
| | - Mariam Akram
- Department of Physics, The Women University, P.O. Box 66000, Multan, Pakistan
| | - Amir Sohail
- Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
6
|
Hassan H, Iqbal MW, Al-Shaalan NH, Alharthi S, Alqarni ND, Amin MA, Afzal AM. Synergistic redox enhancement: silver phosphate augmentation for optimizing magnesium copper phosphate in efficient energy storage devices and oxygen evolution reaction. NANOSCALE ADVANCES 2023; 5:4735-4751. [PMID: 37705774 PMCID: PMC10496879 DOI: 10.1039/d3na00466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
The implementation of battery-like electrode materials with complicated hollow structures, large surface areas, and excellent redox properties is an attractive strategy to improve the performance of hybrid supercapacitors. The efficiency of a supercapattery is determined by its energy density, rate capabilities, and electrode reliability. In this study, a magnesium copper phosphate nanocomposite (MgCuPO4) was synthesized using a hydrothermal technique, and silver phosphate (Ag3PO4) was decorated on its surface using a sonochemical technique. Morphological analyses demonstrated that Ag3PO4 was closely bound to the surface of amorphous MgCuPO4. The MgCuPO4 nanocomposite electrode showed a 1138 C g-1 capacity at 2 A g-1 with considerably improved capacity retention of 59% at 3.2 A g-1. The increased capacity retention was due to the fast movement of electrons and the presence of an excess of active sites for the diffusion of ions from the porous Ag3PO4 surface. The MgCuPO4-Ag3PO4//AC supercapattery showed 49.4 W h kg-1 energy density at 550 W kg-1 power density and outstanding capacity retention (92% after 5000 cycles). The experimental findings for the oxygen evolution reaction reveal that the initial increase in potential required for MgCuPO4-Ag3PO4 is 142 mV, indicating a clear Tafel slope of 49 mV dec-1.
Collapse
Affiliation(s)
- Haseebul Hassan
- Department of Physics, Riphah International University Campus Lahore Pakistan
| | | | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P. O. Box 11099 Taif Saudi Arabia
| | - Nawal D Alqarni
- Department of Chemistry, College of Science, University of Bisha Bisha 61922 Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University P. O. Box 11099 Taif Saudi Arabia
| | - Amir Muhammad Afzal
- Department of Physics, Riphah International University Campus Lahore Pakistan
| |
Collapse
|
7
|
Afzal AM, Awais M, Yasmeen A, Iqbal MW, Mumtaz S, Ouladsmane M, Usman M. Exploring the redox characteristics of porous ZnCoS@rGO grown on nickel foam as a high-performance electrode for energy storage applications. RSC Adv 2023; 13:21236-21248. [PMID: 37456536 PMCID: PMC10339282 DOI: 10.1039/d3ra02792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
A supercapattery is a device that combines the properties of batteries and supercapacitors, such as power density and energy density. A binary composite (zinc cobalt sulfide) and rGO are synthesized using a simple hydrothermal method and modified Hummers' method. A notable specific capacity (Cs) of 1254 C g-1 is obtained in the ZnCoS@rGO case, which is higher than individual Cs of ZnS (975 C g-1) and CoS (400 C g-1). For the asymmetric (ASC) device (ZnCoS@rGO//PANI@AC), the PANI-doped activated carbon and ZnCoS@rGO are used as the cathode and anode respectively. A high Cm of 141 C g-1 is achieved at 1.4 A g-1. The ASC is exhibited an extraordinary energy density of 45 W h kg-1 with a power density 5000 W kg-1 at 1.4 A g-1. To check the stability of the device, the ASC device is measured for 2000 charging/discharging cycles. The device showed improved coulombic efficiency of 94%. These findings confirmed that the two-dimensional materials provide the opportunities to design battery and supercapacitor hybrid devices.
Collapse
Affiliation(s)
- Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Muhammad Awais
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Aneeqa Yasmeen
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | - Sohail Mumtaz
- Department of Electrical and Biological Physics, Kwangwoon University Seoul 01897 Korea
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Muhammad Usman
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University Xuzhou P. R. China
| |
Collapse
|
8
|
Rafique H, Iqbal MW, Wabaidur SM, Hassan HU, Afzal AM, Abbas T, Habila MA, Elahi E. The supercapattery designed with a binary composite of niobium silver sulfide (NbAg 2S) and activated carbon for enhanced electrochemical performance. RSC Adv 2023; 13:12634-12645. [PMID: 37101525 PMCID: PMC10123492 DOI: 10.1039/d3ra01230a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
A supercapattery is a hybrid device that is a combination of a battery and a capacitor. Niobium sulfide (NbS), silver sulfide (Ag2S), and niobium silver sulfide (NbAg2S) were synthesized by a simple hydrothermal method. NbAg2S (50/50 wt% ratio) had a specific capacity of 654 C g-1, which was higher than the combined specific capacities of NbS (440 C g-1) and Ag2S (232 C g-1), as determined by the electrochemical investigation of a three-cell assembly. Activated carbon and NbAg2S were combined to develop the asymmetric device (NbAg2S//AC). A maximum specific capacity of 142 C g-1 was delivered by the supercapattery (NbAg2S//AC). The supercapattery (NbAg2S/AC) provided 43.06 W h kg-1 energy density while retaining 750 W kg-1 power density. The stability of the NbAg2S//AC device was evaluated by subjecting it to 5000 cycles. After 5000 cycles, the (NbAg2S/AC) device still had 93% of its initial capacity. This research indicates that merging NbS and Ag2S (50/50 wt% ratio) may be the best choice for future energy storage technologies.
Collapse
Affiliation(s)
- Hirra Rafique
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | | | - Haseeb Ul Hassan
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Tasawar Abbas
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Mohamed A Habila
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ehsan Elahi
- Department of Physics and Astronomy, Sejong University Seoul South Korea
| |
Collapse
|
9
|
Babu SK, Gunasekaran B. Ultrathin α-Ni(OH)2 nanosheets coated on MOF-derived Fe2O3 nanorods as a potential electrode for solid-state hybrid supercapattery device. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
11
|
Review of advances in improving thermal, mechanical and electrochemical properties of polyaniline composite for supercapacitor application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
12
|
Iqbal MZ, Aziz U, Aftab S, Wabaidur SM, Siddique S, Iqbal MJ. A Hydrothermally Prepared Lithium and Copper MOF Composite as Anode Material for Hybrid Supercapacitor Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Muhammad Zahir Iqbal
- Faculty of Engineering Sciences Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Umer Aziz
- Faculty of Engineering Sciences Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering Sejong University 209 Neungdong-ro, Gwangjin-gu Seoul 05006 South Korea
| | | | - Salma Siddique
- Faculty of Allied Health Sciences and Technology Women University Swabi Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Muhammad Javaid Iqbal
- Centre of Excellence in Solid State Physics University of the Punjab Quaid-e-Azam Campus Lahore 54590 Punjab Pakistan
| |
Collapse
|
13
|
Iqbal MW, Khan MH, Afzal AM, Hassan H, Alzahrani HA, Aftab S. Incorporation of carbon nanotubes in sulfide-based binary composite to enhance the storage performance of supercapattery devices. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Raman V, Gándara F, Ibrahim Mohamed Tahir M, Basyaruddin Abdul Rahman M, Sulaiman Y. 1,2,4-Triazole (Htrz) Functionalised 2D-Manganese-Organic Framework (UPMOF-5) as a Battery-type Electrode for Supercapattery. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Hassan H, Iqbal MW, Afzal AM, Asghar M, Aftab S. Enhanced the performance of zinc strontium sulfide-based supercapattery device with the polyaniline doped activated carbon. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Liu F, Wu C, Dong Y, Zhu C, Chen C. Poly(azure C)-coated CoFe Prussian blue analogue nanocubes for high-energy asymmetric supercapacitors. J Colloid Interface Sci 2022; 628:682-690. [PMID: 36027778 DOI: 10.1016/j.jcis.2022.08.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Prussian blue analogues are considered as promising supercapacitor electrode materials due to their high theoretical capacitance and low cost. Yet, they suffer from poor electronic conductivity and cycling life. Here, a redox dye polymer, poly(azure C) (PAC), is in-situ grown uniformly on CoFe Prussian blue analogue (CoFePBA). As a polymer mediator, the PAC coating on each PBA not only enhances the electronic conductivity and surface area, but also improves the structural stability and specific capacitance of PBA. As a result, the optimized CoFePBA@PAC possesses ultrahigh specific capacitance (968.67 F g-1 at 1 A g-1), superior rate performance (665.78 F g-1 at 10 A g-1), and excellent long-cycling stability (92.45% capacity retention after 2000 cycles). As an application, a fabricated CoFePBA@PAC//AC asymmetric supercapacitor (AC = activated carbon) maintains 84.7% capacitance retention in 2000 cycles at 1 A g-1 and displays a superior specific energy of 29.16 W h kg-1 at the power density of 799.78 W kg-1. These results demonstrate that redox dye polymer-coated PBAs with outstanding performance have a promising prospect in the field of energy storage.
Collapse
Affiliation(s)
- Fei Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chenghan Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Ying Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, Jiangsu, PR China.
| |
Collapse
|
17
|
Ismail R, Šeděnková I, Černochová Z, Romanenko I, Pop-Georgievski O, Hrubý M, Tomšík E. Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. BIOSENSORS 2022; 12:bios12070446. [PMID: 35884249 PMCID: PMC9313018 DOI: 10.3390/bios12070446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
We constructed a sensor for the determination of Fe2+ and/or Fe3+ ions that consists of a polyaniline layer as an ion-to-electron transducer; on top of it, chelating molecules are deposited (which can selectively chelate specific ions) and protected with a non-biofouling poly(2-methyl-2-oxazoline)s layer. We have shown that our potentiometric sensing layers show a rapid response to the presence of Fe2+ or Fe3+ ions, do not experience interference with other ions (such as Cu2+), and work in a biological environment in the presence of bovine serum albumin (as a model serum protein). The sensing layers detect iron ions in the concentration range from 5 nM to 50 µM.
Collapse
|
18
|
Vinodh R, Babu RS, Sambasivam S, Gopi CVVM, Alzahmi S, Kim HJ, de Barros ALF, Obaidat IM. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. NANOMATERIALS 2022; 12:nano12091511. [PMID: 35564227 PMCID: PMC9105330 DOI: 10.3390/nano12091511] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022]
Abstract
Supercapacitors (SCs), also known as ultracapacitors, should be one of the most promising contenders for meeting the needs of human viable growth owing to their advantages: for example, excellent capacitance and rate efficiency, extended durability, and cheap materials price. Supercapacitor research on electrode materials is significant because it plays a vital part in the performance of SCs. Polyaniline (PANI) is an exceptional candidate for energy-storage applications owing to its tunable structure, multiple oxidation/reduction reactions, cheap price, environmental stability, and ease of handling. With their exceptional morphology, suitable functional linkers, metal sites, and high specific surface area, metal–organic frameworks (MOFs) are outstanding materials for electrodes fabrication in electrochemical energy storage systems. The combination of PANI and MOF (PANI/MOF composites) as electrode materials demonstrates additional benefits, which are worthy of exploration. The positive impacts of the two various electrode materials can improve the resultant electrochemical performances. Recently, these kinds of conducting polymers with MOFs composites are predicted to become the next-generation electrode materials for the development of efficient and well-organized SCs. The recent achievements in the use of PANI/MOFs-based electrode materials for supercapacitor applications are critically reviewed in this paper. Furthermore, we discuss the existing issues with PANI/MOF composites and their analogues in the field of supercapacitor electrodes in addition to potential future improvements.
Collapse
Affiliation(s)
- Rajangam Vinodh
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Rajendran Suresh Babu
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso suckow da Fonesca, Av. Maracanã Campus 229, Rio de Janeiro 20271-110, Brazil; (R.S.B.); (A.L.F.d.B.)
| | - Sangaraju Sambasivam
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Chandu V. V. Muralee Gopi
- Department of Electrical Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.A.); (H.-J.K.); (I.M.O.)
| | - Hee-Je Kim
- Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: (S.A.); (H.-J.K.); (I.M.O.)
| | - Ana Lucia Ferreira de Barros
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso suckow da Fonesca, Av. Maracanã Campus 229, Rio de Janeiro 20271-110, Brazil; (R.S.B.); (A.L.F.d.B.)
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.A.); (H.-J.K.); (I.M.O.)
| |
Collapse
|
19
|
Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage. ENERGIES 2022. [DOI: 10.3390/en15072471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flexible supercapacitors are highly demanding due to their wearability, washability, lightweight property and rollability. In this paper, a comprehensive review on flexible supercapacitors based on conductive polymers such as polypyrrole (PPy), polyaniline (PANI) and poly(3,4-ethylenedioxtthiophne)-polystyrene sulfonate (PEDOT:PSS). Methods of enhancing the conductivity of PEDOT:PSS polymer using various composites and chemical solutions have been reviewed in detail. Furthermore, supercapacitors based on carbonized banana peels and methods of activation have been discussed in point. This review covers the up-to-date progress achieved in conductive polymer-based materials for supercapacitor electrodes. The effect of various composites with PEDOT:PSS have been discussed. The review result indicated that flexible, stretchable, lightweight, washable, and disposable wearable electronics based on banana peel and conductive polymers are highly demanding.
Collapse
|
20
|
Iqbal MZ, Amjad N, Khan MW. Metal‐organic‐framework as novel electrode materials for hybrid battery‐supercapacitor applications. ChemElectroChem 2022. [DOI: 10.1002/celc.202200036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Zahir Iqbal
- GIK Institute of Engineering Sciences & Technology GIK Institute of Engineering Sciences & Technology PAKISTAN
| | - Nayyab Amjad
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Faculty of Engineering Sciences PAKISTAN
| | - Muhammad Waqas Khan
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Engineering Sciences PAKISTAN
| |
Collapse
|
21
|
Chu X, Meng F, Zhang W, Yang H, Zou X, Molin S, Jasinski P, Sun X, Zheng W. A dual-control strategy based on electrode material and electrolyte optimization to construct an asymmetric supercapacitor with high energy density. NANOTECHNOLOGY 2022; 33:205403. [PMID: 35078166 DOI: 10.1088/1361-6528/ac4eb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frames (MOFs) are regarded as excellent candidates for supercapacitors that have attracted much attention because of their diversity, adjustability and porosity. However, both poor structural stability in aqueous alkaline electrolytes and the low electrical conductivity of MOF materials constrain their practical implementation in supercapacitors. In this study, bimetallic CoNi-MOF were synthesized to enhance the electrical conductivity and electrochemical activity of nickel-based MOF, as well as the electrochemical performance of the CoNi-MOF in multiple alkaline electrolytes was investigated. The CoNi-MOF/active carbon device, as-fabricated with a 1 M KOH electrolyte, possesses a high energy density of 35 W h kg-1with a power density of 1450 W kg-1, exhibiting outstanding cycling stability of 95% over 10,000 cycles. The design of MOF-based electrode materials and the optimization selection of electrolytes pave the way for constructing high-performance supercapacitors.
Collapse
Affiliation(s)
- Xianyu Chu
- Key Laboratory of Mobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, People's Republic of China
| | - Fanling Meng
- Key Laboratory of Mobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Mobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| | - He Yang
- Key Laboratory of Mobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Zou
- Key Laboratory of Mobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| | - Sebastian Molin
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80233, Poland
| | - Piotr Jasinski
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80233, Poland
| | - Xiangcheng Sun
- Shandong Nanshan Institute of Science and Technology, Yantai 265700, People's Republic of China
| | - Weitao Zheng
- Key Laboratory of Mobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
22
|
Ye W, Yang W. Exploring metal-organic frameworks in electrochemistry by a bibliometric analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yu Y, Han Y, Cui J, Wang C. Cobalt-based metal-organic framework electrodeposited on nickel foam as a binder-free electrode for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-based metal-organic framework (Co-MOF) has been in-situ grown on nickel foam (NF) by cathodic electrodeposition using highly active cobalt surface modifier to enable uniform nucleation and tight growth of Co-MOF....
Collapse
|
24
|
Zhang J, Guo H, Yang F, Wang M, Zhang H, Zhang T, Sun L, Yang M, Yang W. Walnut shell-derived porous carbon integrated with Ni-MOF/SPANI composites for high-performance supercapacitor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Metal-organic frameworks based on Schiff base condensation reaction as battery-type electrodes for supercapattery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Faisal MM, Ali SR, K.C. S, Iqbal MW, Iqbal MZ, Saeed A. Highly porous terpolymer-MOF composite electrode material for high performance supercapattery devices. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Wu X, Zhang H, He C, Wu C, Huang KJ. High-power-energy proton supercapacitor based on interface-adapted durable polyaniline and hexagonal tungsten oxide. J Colloid Interface Sci 2021; 601:727-733. [PMID: 34091319 DOI: 10.1016/j.jcis.2021.05.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/06/2023]
Abstract
Supercapacitors are high power energy storage devices, however, their application are remain limited by the low energy density. Developing high capacity electrode materials and constructing devices with high operating voltage are effective ways to solve this problem. Herein, performance of polyaniline (PANI) electrode materials is dramatically enhanced by engineering robust PANI/carbon interfaces, through assembling PANI nanorod array on rose petals derived carbon network (RPDCN). The structure of the PANI is optimized by adjusting the concentration of the aniline precursor. The unique structure enables the prepared PANI/RPDCN composite show a high capacitance of 636 F g-1 at 0.5 A g-1, based on the total weight of PANI and RPDCN substrate. The robust interface effectively prolonged the composite electrode stably cycled for over 2000 cycles at 2 A g-1 with a capacity retention of 89%. When coupled with a hexagonal tungsten oxide (h-WO3) anode, a high-power asymmetric proton supercapacitor with high energy densities (29.0 Wh kg-1/0.61 kW kg-1 and 21.4 Wh kg-1/19.51 kW kg-1) was assembled. This work provides an effective and eco-friendly route toward superior PANI electrodes and proposes a promising high-power energy storage system using proton as working ion.
Collapse
Affiliation(s)
- Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Chongqing 400715, China
| | - Huanhuan Zhang
- Collaborative Innovation Center of Henan Province for Energy-Saving Building Materials, Xinyang Normal University, Xinyang 464000, China
| | - Chuan He
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chen Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
29
|
Zolfaghari Y, Ghorbani M, Lashkenari MS. Electrochemical study on zeolitic imidazolate framework -67 modified MnFe2O4/CNT nanocomposite for supercapacitor electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Sun PP, Li YM, Zhang YH, Shi H, Shi FN. Application of a one dimensional Co-MOP wires on supercapacitors. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Zhang M, Nautiyal A, Du H, Wei Z, Zhang X, Wang R. Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Lakhdari D, Guittoum A, Benbrahim N, Belgherbi O, Berkani M, Vasseghian Y, Lakhdari N. A novel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem Toxicol 2021; 151:112099. [PMID: 33677039 DOI: 10.1016/j.fct.2021.112099] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
This article was focused on the elaboration of NiFe-Polyaniline glucose sensors via electrochemical technique. Firstly, the PANi (polyaniline) fibers were synthesized by oxidation of the monomer aniline on FTO (fluorine tin oxide) substrate. Secondly, the Nickel-Iron nanoparticles (NiFe (NPs)) were obtained by the Chronoamperometry method on the Polyaniline surface. The NiFe-PANi hybrid electrode was characterized by scanning electron microscopy (SEM), force atomic microscopy (AFM), Fourier-transformed infrared (FTIR), and X-ray diffraction (XRD). The electrochemical glucose sensing performance of the NiFe alloy nanoparticle was studied by cyclic voltammetry and amperometry. The fabricated glucose sensor Ni-Fe hybrid material exhibited many remarkable sensing performances, such as low-response time (4 s), sensitivity (1050 μA mM-1 cm-2), broad linear range (from 10 μM -1 mM), and low limit of detection (LOD) (0.5 μM, S/N = 3). The selectivity, reliability, and stability of the NiFe hybrid material for glucose oxidation were also investigated. All the results demonstrated that the NiFe-PANi/FTO hybrid electrode is very promising for application in electrochemical glucose sensing.
Collapse
Affiliation(s)
- Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria; Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria.
| | - Abderrahim Guittoum
- Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, Bp 399, Alger-Gare, Algiers, Algeria
| | - Nassima Benbrahim
- Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
33
|
Naeem Ashiq M, Aman A, Alshahrani T, Faisal Iqbal M, Razzaq A, Najam-Ul-Haq M, Shah A, Nisar J, Tyagi D, Fahad Ehsan M. Enhanced electrochemical properties of silver-coated zirconia nanoparticles for supercapacitor application. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1867338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Ali Aman
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University Riyadh, Saudi Arabia
| | - Muhammad Faisal Iqbal
- Institute of Microscale Optoelectronics, Shenzhen University Nanshan, People’s Republic of China
| | - Aamir Razzaq
- Department of Physics, COMSATS Institute of Information Technology Lahore, Pakistan
| | | | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jan Nisar
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Deependra Tyagi
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Muhammad Fahad Ehsan
- School of Natural Sciences, Department of Chemistry, National University of Science and Technology, Islamabad, Pakistan
- Department of Chemistry, Cape Breton University Sydney, Canada
| |
Collapse
|
34
|
In situ synthesis of Ag/NiO derived from hetero-metallic MOF for supercapacitor application. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01431-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Huang S, Shi XR, Sun C, Duan Z, Ma P, Xu S. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2268. [PMID: 33207732 PMCID: PMC7696577 DOI: 10.3390/nano10112268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023]
Abstract
Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.
Collapse
Affiliation(s)
- Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Zhichang Duan
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Pan Ma
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| |
Collapse
|