1
|
Murgueitio Herrera E, Jacome G, Stael C, Arroyo G, Izquierdo A, Debut A, Delgado P, Montalvo G. Green Synthesis of Metal Nanoparticles with Borojó ( Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1526. [PMID: 39330682 PMCID: PMC11434951 DOI: 10.3390/nano14181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024]
Abstract
The predominant aim of the current research was to generate a proposal for the removal of arsenic, a highly toxic pollutant, encountered within the Papallacta Lagoon in Ecuador. The average concentrations of As yielded ranges between 18 to 652 μg/L, through the use of metallic nanoparticles. Sampling was performed in the lagoon with their respective geographic locations and "in situ" parameters. Nanoparticles of Mn3O4 NPs, Fe3O4 NPs, and CuO NPs were synthesized at a 0.5 M concentration, using the precipitation method, and borojó (Borojoa patinoi) extract was added as an anti-caking agent as well as antioxidant. The nanoparticles were characterized by visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. After arsenic removal treatment using nanoparticles, a randomized experimental design of different concentrations (5 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, and 150 mg/L) was applied at laboratory level. The average diameter of Fe3O4NPs ranged from 9 nm to 36 nm, Mn3O4 NPs were 15-20 nm, and CuO NPs ranged from 25 nm to 30 nm. Arsenic removal percentages using Fe3O4 NPs with a concentration of 150 mg/L was 87%; with Mn3O4 NPs, the removal was 70% and CuO NPs of about 63.5%. Finally, these nanoparticles could be used in a water treatment plant for the Papallacta Lagoon.
Collapse
Affiliation(s)
- Erika Murgueitio Herrera
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
- Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador;
| | - Gissela Jacome
- Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador;
| | - Carina Stael
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Geovanna Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Andrés Izquierdo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Patricio Delgado
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
- Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador
| | - Gemma Montalvo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
- Instituto Universitario de Investigación en Ciencias Policiales, Universidad de Alcalá, Libreros 27, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Payami E, Teimuri-Mofrad R. Ternary nanocomposite of GQDs-PolyFc/Fe3O4/PANI: Design, synthesis, and applied for electrochemical energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Payami E, Keynezhad MA, Safa KD, Teimuri-Mofrad R. Development of high-performance supercapacitor based on Fe3O4@SiO2@PolyFc nanoparticles via surface-initiated radical polymerization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Rahimpour S, Luo L, Teimuri-Mofrad R. Preparation of ferrocenyl-furan modified graphene oxide via Diels-Alder click reaction and using of its polypyrrole nanocomposites as supercapacitor electrode material. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
zhao J, Zhao Y, Hou Y, Xu Z, Chang S, Gou X. Synthesis and properties of binuclear ferrocene energetic compounds as combustion rate catalyst. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- junlong zhao
- Northwest University college of Chemistry and Materials Science Guodu street 710127 xi'an CHINA
| | | | | | | | | | | |
Collapse
|
7
|
Teimuri‐Mofrad R, Payami E, Piriniya A, Hadi R. Green synthesis of ferrocenyl‐modified MnO
2
/Carbon‐based nanocomposite as an outstanding supercapacitor electrode material. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Ayda Piriniya
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
8
|
Payami E, Teimuri‐Mofrad R. CNT‐containing redox active nanohybrid: a promising ferrocenyl‐based electrode material for outstanding energy storage application. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
9
|
Payami E, Neshad S, Aghaiepour A, Teimuri‐Mofrad R. Novel
meso
‐substituted ferrocene‐appended porphyrins: Synthesis, characterization, and electrochemical evaluation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Saeed Neshad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Alireza Aghaiepour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
10
|
|
11
|
A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Composites and Copolymers Containing Redox-Active Molecules and Intrinsically Conducting Polymers as Active Masses for Supercapacitor Electrodes—An Introduction. Polymers (Basel) 2020; 12:polym12081835. [PMID: 32824366 PMCID: PMC7464255 DOI: 10.3390/polym12081835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023] Open
Abstract
In this introductory report, composites and copolymers combining intrinsically conducting polymers and redox-active organic molecules, suggested as active masses without additional binder and conducting agents for supercapacitor electrodes, possibly using the advantageous properties of both constituents, are presented. A brief overview of the few reported examples of the use of such copolymers, composites, and comparable combinations of organic molecules and carbon supports is given. For comparison a few related reports on similar materials without intrinsically conducting polymers are included.
Collapse
|
13
|
Hadi R, Rahimpour K, Payami E, Teimuri‐Mofrad R. Design and green synthesis of 1‐(4‐ferrocenylbutyl)piperazine chemically grafted reduced graphene oxide for supercapacitor application. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
14
|
Rahimpour K, Teimuri‐Mofrad R. Star‐Shaped Ferrocene‐Based 1,4‐Disubstituted‐1,2,3‐Triazole Derivatives: Synthesis, Characterization, and Investigation of Linear Optical and Electrochemical Properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|