1
|
Guo Y, Zhou G, Tong Y. Electronic interaction of ruthenium species on bimetallic phosphide for superior electrocatalytic hydrogen generation. Dalton Trans 2023; 52:12733-12741. [PMID: 37610334 DOI: 10.1039/d3dt01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The exploitation of high-performance electrocatalysts to achieve the economic electrocatalytic hydrogen evolution reaction (HER) is significant in generating H2 fuel. Enhancing the activity of the carrier catalyst by modifying trace precious metals is one of the important strategies. Herein, a hybrid material is developed by incorporating trace Ru species into a bimetallic phosphide (NiCoP) matrix on nickel foam (NF), showing a superior catalytic activity for HER. The Ru-NiCoP/NF hybrid material has plenty of heterointerfaces, improved electronic interaction, and small interfacial charge transfer resistance, improving the reaction kinetics of the HER. Remarkable, the Ru-NiCoP/NF provides a low overpotential of 96 mV at the current density of 50 mA cm-2 and high stability in 1.0 M KOH solution presenting a promising potential for hydrogen production. In addition, the Ru-NiCoP/NF sample exhibits the highest TOF value of 0.54 s-1 at an overpotential of 100 mV, which outperforms the commercial Ru/C catalyst. This study offers a promising approach for the synthesis of other precious metal supported hybrid materials.
Collapse
Affiliation(s)
- Yiming Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Guorong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
2
|
Zhou S, Zhou H, Zhang Y, Zhu K, Zhai Y, Wei D, Zeng S. SnO 2 Anchored in S and N Co-Doped Carbon as the Anode for Long-Life Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:700. [PMID: 35215028 PMCID: PMC8877561 DOI: 10.3390/nano12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022]
Abstract
Tin dioxide (SnO2) has been the focus of attention in recent years owing to its high theoretical capacity (1494 mAh g-1). However, the application of SnO2 has been greatly restricted because of the huge volume change during charge/discharge process and poor electrical conductivity. In this paper, a composite material composed of SnO2 and S, N co-doped carbon (SnO2@SNC) was prepared by a simple solid-state reaction. The as-prepared SnO2@SNC composite structures show enhanced lithium storage capacity as compared to pristine SnO2. Even after cycling for 1000 times, the as-synthesized SnO2@SNC can still deliver a discharge capacity of 600 mAh g-1 (current density: 2 A g-1). The improved electrochemical performance could be attributed to the enhanced electric conductivity of the electrode. The introduction of carbon could effectively improve the reversibility of the reaction, which will suppress the capacity fading resulting from the conversion process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (S.Z.); (H.Z.); (Y.Z.); (K.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
3
|
Li R, Nie S, Miao C, Xin Y, Mou H, Xu G, Xiao W. Heterostructural Sn/SnO 2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J Colloid Interface Sci 2022; 606:1042-1054. [PMID: 34487927 DOI: 10.1016/j.jcis.2021.08.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
The nitrogen-doped carbon (NC) coating encapsulating heterostructural Sn/SnO2 microcube powders (Sn/SnO2@NC) are successfully fabricated through hydrothermal, polymerization of hydrogel, and carbonization processes, in which the SnO precursor powders exhibit regular microcube structure and uniform size distribution in the presence of optimized N2H4·H2O (3.0 mL of 1.0 mol/L). Interestingly, the precursor powders are easily subjected to a disproportionated reaction to yield the desirable heterostructural Sn/SnO2@NC microcube powders after being calcined at 600 °C in N2 atmosphere in the presence of home-made hydrogel. The coin cells assembled with the Sn/SnO2@NC electrode present a high initial discharge specific capacity (1058 mAh g-1 at 100 mA g-1), improved rate capability (an excellent DLi+ value of 2.82 × 10-15 cm2 s-1) and enhanced cycling stability (a reversible discharge specific capacity of 486.5 mAh g-1 after 100 cycles at 100 mA g-1). The enhanced electrochemical performance can be partly ascribed to the heterostructural microcube that can accelerate the transfer rate of lithium ions by shortening the transmission paths, and be partly to the NC coating that can accommodate the volume effect and contribute to partial lithium storage capacity. Therefore, the strategy may be able to extend the fabrication of Sn/SnO2 heterostructural microcube powders and further application as promising anode materials in lithium ion batteries.
Collapse
Affiliation(s)
- Rui Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Shuqing Nie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Chang Miao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China.
| | - Yu Xin
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Houyi Mou
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Guanli Xu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China
| | - Wei Xiao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, P. R. China.
| |
Collapse
|
4
|
Zhang R, Tan Q, Bao S, Deng J, Xie Y, Zheng F, Wu G, Xu B. Spray drying induced engineering a hierarchical reduced graphene oxide supported heterogeneous Tin dioxide and Zinc oxide for Lithium-ion storage. J Colloid Interface Sci 2021; 608:1758-1768. [PMID: 34743046 DOI: 10.1016/j.jcis.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
In this work, a hierarchical reduced graphene oxide (RGO) supportive matrix consisting of both larger two-dimensional RGO sheets and smaller three-dimensional RGO spheres was engineered with ZnO and SnO2 nanoparticles immobilized. The ZnO and SnO2 nanocrystals with controlled size were in sequence engineered on the surface of the RGO sheets during the deoxygenation of graphene oxide sample (GO), where the zinc-containing ZIF-8 sample and metal tin foil were used as precursors for ZnO and SnO2, respectively. After a spray drying treatment and calcination, the final ZnO@SnO2/RGO-H sample was obtained, which delivered an outstanding specific capacity of 982 mAh·g-1 under a high current density of 1000 mA·g-1 after 450 cycles. Benefitting from the unique hierarchical structure, the mechanical strength, ionic and electric conductivities of the ZnO@SnO2/RGO-H sample have been simultaneously promoted. The joint contributions from pseudocapacitive and battery behaviors in lithium-ion storage processes bring in both large specific capacity and good rate capability. The industrially mature spray drying method for synthesizing RGO based hierarchical products can be further developed for wider applications.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingke Tan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianbin Deng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xie
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fei Zheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibersfv and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Li B, Bao S, Tan Q, Zhang R, Shan L, Wang C, Wu G, Xu B. Engineering tin dioxide quantum dots in a hierarchical graphite and graphene oxide framework for lithium-ion storage. J Colloid Interface Sci 2021; 600:649-659. [PMID: 34049020 DOI: 10.1016/j.jcis.2021.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The spontaneous aggregation and poor electronic conductivity are widely recognized as the main challenges for practically applied nano-sized tin dioxide-based anode candidates in lithium-ion batteries. This work describes a hierarchical graphite and graphene oxide (GO) framework stabilized tin dioxide quantum dot composite (SnO2@C/GO), which is synthesized by a solid-state ball-milling treatment and a water-phase self-assembly process. Characterization results demonstrate the engineered inside nanostructured graphite and outside GO layers from the SnO2@C/GO composite jointly contribute to a good immobilization effect for the SnO2 quantum dots. The hierarchical carbonaceous matrix supported SnO2 quantum dots could maintain good structure stability over a long cycling life under high current densities. As an anodic electrochemically active material for lithium-ion batteries, the SnO2@C/GO composite shows a high reversible capacity of 1156 mAh·g-1 at the current density of 1000 mA·g-1 for 350 continual cycles as well as good rate performance. The large pseudocapacitive behavior in this electrode is favorable for promoting the lithium-ion storage capability under higher current densities. The whole synthetic route is simple and effective, which probably has good potential for further development to massively fabricate high-performance electrode active materials for energy storage.
Collapse
Affiliation(s)
- Bowen Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingke Tan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liangjie Shan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Li J, Yao W, Zhang F, Rao X, Zhang Q, Zhong S, Cheng H, Yan Z. Porous SnO2 microsphere and its carbon nanotube hybrids: Controllable preparation, structures and electrochemical performances as anode materials. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Zhao W, Yuan Y, Du P, Zhu M, Yin S, Guo S. Multi‐shelled Hollow Nanospheres of SnO
2
/Sn@TiO
2
@C Composite as High‐performance Anode for Lithium‐Ion Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wencai Zhao
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Yongfeng Yuan
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Pingfan Du
- College of Textile Science and Engineering Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Min Zhu
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Simin Yin
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| | - Shaoyi Guo
- College of Machinery and Automation Zhejiang Sci-Tech University 310018 Hangzhou China
| |
Collapse
|