1
|
Xu W, Xiao T, Chen J, Shu J, Li J, Ma Y, Li X, Zhong Z, Zhang Z, Li Y, Zhang Q, Sun Z, Tang Y. Ag-Mediated Growth of Au/Ag-Cu Ternary Heterostructures for Selective Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57162-57170. [PMID: 39401287 DOI: 10.1021/acsami.4c12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Copper (Cu)-based nanocatalysts play crucial roles in the electrochemical CO2 reduction reaction (ECO2RR) for sustainable energy resources. Particularly, Cu-based nanostructures incorporating Au and Ag are promising, offering enhanced activity, selectivity, and stability. However, precise control over the structure and composition of heterostructures remains challenging, hindering the development of highly efficient catalysts. Herein, we present a silver (Ag) transition-layer-mediated approach to synthesize ternary heterostructures with two specific morphologies, namely, Au/Ag-Cu-side and Au/Ag-Cu-tip, which exhibit different Ag-Cu interface epitaxial patterns. The two heterostructures achieve high C2 product selectivity in ECO2RR. Especially, the Au/Ag-Cu-side structure achieves 50.3% C2 selectivity with 35.5% ethanol, while the tip structure shows higher ethylene selectivity. Our study reveals the impact of the Ag layer in directing deposition sites on heterostructure growth and further facilitating the design of multicomponent Cu-based catalysts with enhanced structural integrity and ECO2RR performance.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Taishi Xiao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
| | - Jie Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Junxiang Shu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
| | - Jili Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
| | - Yao Ma
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xiang Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zihan Zhong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zitao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yefei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
| | - Qing Zhang
- Shanghai Key Laboratory of High-resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhengzong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
| | - Yun Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Xiao Y, Huang X, Li H, Han QW, Zhang Y, Tian F, Xu M. Insight to the Catalytic Activity of Atomically Precise Ag 4Ni 2 Nanoclusters on Silicon Carbide for Nitroarene Reduction. Inorg Chem 2024; 63:8958-8969. [PMID: 38687123 DOI: 10.1021/acs.inorgchem.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Atomically precise Ag4Ni2 nanoclusters with 2,4-dimethylbenzenethiol as the ligands were synthesized and characterized as a cocatalyst of SiC for the selective hydrogenation of nitroarenes to arylamine in the presence of NaBH4. The obtained Ag4Ni2/SiC samples exhibited extraordinary catalytic activity, and a self-accelerated catalytic process was observed with the reduction of nitrophenol to aminophenol as the model reaction. Experimental comparison between the Ag4Ni2/SiC samples before and after the catalysis showed that the transformation of Ag4Ni2 clusters to polydisperse Ag particles as well as amorphous NiOx on the surface of SiC in the catalysis was the key to their high activity. AIMD calculations revealed that the transformation of Ag4Ni2 was driven by the presence of multiple hydrides on the cluster, which induced the detachment of the thiol ligand of the nanoclusters.
Collapse
Affiliation(s)
- Yutong Xiao
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaofei Huang
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hou Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qing-Wen Han
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Yu Zhang
- Department of Water Resources, Shandong Water Conservancy Vocational College, Rizhao, Shandong 276826, P. R. China
| | - Fan Tian
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Man Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
3
|
Liu L, Wu X, Wang F, Zhang L, Wang X, Song S, Zhang H. Dual-Site Metal Catalysts for Electrocatalytic CO 2 Reduction Reaction. Chemistry 2023; 29:e202300583. [PMID: 37367498 DOI: 10.1002/chem.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Kuang S, Li M, Chen X, Chi H, Lin J, Hu Z, Hu S, Zhang S, Ma X. Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Chen Z, Wang X, Wang L, Wu YA. Ag@Pd bimetallic structures for enhanced electrocatalytic CO 2 conversion to CO: an interplay between the strain effect and ligand effect. NANOSCALE 2022; 14:11187-11196. [PMID: 35904075 DOI: 10.1039/d2nr03079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical CO2 reduction reactions provide a promising path to effectively convert CO2 into valuable chemicals and fuels for industries. Among the many CO2 conversion catalysts, Pd stands out as a promising catalyst for effective CO2 to CO conversion. Here, using the misfit strain strategy, Ag@Pd bimetallic nanoparticles with different Pd overlayer contents were prepared as CO2 reduction catalysts. By varying the Pd overlayer content, all the Ag@Pd bimetallic nanoparticles exhibited superior CO2 conversion performance over their Pd and Ag nanoparticle counterparts. An optimal Pd-to-Ag ratio of 1.5 : 1 yielded the highest CO faradaic efficiency of 94.3% at -0.65 V vs. RHE with a high CO specific current density of 3.9 mA cm-2. It was found that the Pd content can substantially affect the interplay between the strain effect and ligand effect, resulting in optimized binding properties of the reaction intermediates on the catalyst surface, thereby enhancing the CO2 reduction performance.
Collapse
Affiliation(s)
- Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Lei Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
6
|
Wang A, Yu D, Yin H, Yuan W. Preparation of Bimetallic CuxAgy Nanoparticles and their Catalytic Performance in Hydrogenation of 4-Nitrophenol with H2 to 4-Aminophenol. Catal Letters 2022. [DOI: 10.1007/s10562-022-03946-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Shen K, Gong Q, Zhang H, Li K, Sun Z, Li G, Hu X, Liu L, Wang W. Role of composition and texture on bifunctional catalytic performance of extruded Au–Cu alloys. RSC Adv 2022; 12:22492-22502. [PMID: 36105952 PMCID: PMC9366596 DOI: 10.1039/d2ra03438g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Extruded Au–Cu alloys can be used as bifunctional catalysts for the electro-oxidation of CH3OH and HCOOH, and their catalytic activities can be improved based on alloying and appropriate texture.
Collapse
Affiliation(s)
- Kechang Shen
- Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China
| | - Qingtao Gong
- Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China
| | - Hao Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Kangqiang Li
- Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China
| | - Zhongyu Sun
- Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China
| | - Guihua Li
- Shandong Institute of Metrology, Jinan 250014, China
| | - Xin Hu
- School of Mathematics and Statistics Science, Ludong University, Yantai 264025, China
| | - Lu Liu
- College of Transportation, Ludong University, Yantai 264025, China
| | - Weimin Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
8
|
Ayyub MM, Rao CNR. Designing electrode materials for the electrochemical reduction of carbon dioxide. MATERIALS HORIZONS 2021; 8:2420-2443. [PMID: 34870308 DOI: 10.1039/d1mh00675d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of carbon dioxide is a viable alternative for reducing fossil fuel consumption and reducing atmospheric CO2 levels. Although, a wide variety of materials have been studied for electrochemical reduction of CO2, the selective and efficient reduction of CO2 is still not accomplished. Complex reaction mechanisms and the competing hydrogen evolution reaction further complicates the efficiency of materials. An extensive understanding of reaction mechanism is hence essential in designing an ideal electrocatalyst material. Therefore, in this review article we discuss the materials explored in the last decade with focus on their catalytic mechanism and methods to enhance their catalytic activity.
Collapse
Affiliation(s)
- Mohd Monis Ayyub
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - C N R Rao
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
9
|
Talukdar B, Mendiratta S, Huang MH, Kuo CH. Recent Advances in Bimetallic Cu-Based Nanocrystals for Electrocatalytic CO 2 Conversion. Chem Asian J 2021; 16:2168-2184. [PMID: 34184830 DOI: 10.1002/asia.202100583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Indexed: 11/12/2022]
Abstract
An elevated level of anthropogenic CO2 has been the major cause of global warming, and significant efforts are being made around the world towards the development of CO2 capture, storage and reuse technologies. Among various CO2 conversion technologies, electrochemical CO2 reduction (CO2 RR) by nanocrystals is one of the most promising strategies as it is facile, quick, and can be integrated with other renewable energy techniques. Judiciously designed catalytic nanomaterials promise to be the next generation of electrochemical electrodes that offer cutting-edge performance, low energy consumption and aid in reducing overall carbon footprint. In this minireview, we highlight the recent developments related to the bimetallic Cu-based nanocatalysts and discuss their structure-property relationships. We focus on the design principles and parameters required for the enhancement of CO2 conversion efficiency, selectivity, and stability.
Collapse
Affiliation(s)
- Biva Talukdar
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, 11529, Taiwan
| | - Shruti Mendiratta
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Michael H Huang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
10
|
Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J. Electrocatalysis of gold-based nanoparticles and nanoclusters. MATERIALS HORIZONS 2021; 8:1657-1682. [PMID: 34846497 DOI: 10.1039/d0mh01947j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold (Au)-based nanomaterials, including nanoparticles (NPs) and nanoclusters (NCs), have shown great potential in many electrocatalytic reactions due to their excellent catalytic ability and selectivity. In recent years, Au-based nanostructured materials have been considered as one of the most promising non-platinum (Pt) electrocatalysts. The controlled synthesis of Au-based NPs and NCs and the delicate microstructure adjustment play a vital role in regulating their catalytic activity toward various reactions. This review focuses on the latest progress in the synthesis of efficient Au-based NP and NC electrocatalysts, highlighting the relationship between Au nanostructures and their catalytic activity. This review first discusses the parameters of Au-based nanomaterials that determine their electrocatalytic performance, including composition, particle size and architecture. Subsequently, the latest electrocatalytic applications of Au-based NPs and NCs in various reactions are provided. Finally, some challenges and opportunities are highlighted, which will guide the rational design of Au-based NPs and NCs as promising electrocatalysts.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Gong S, Xiao X, Wang W, Sam DK, Lu R, Xu Y, Liu J, Wu C, Lv X. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO 2-to-CO conversion. J Colloid Interface Sci 2021; 600:412-420. [PMID: 34023702 DOI: 10.1016/j.jcis.2021.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
Metal-carbon matrix catalyst has attracted a great deal of interest in electrochemical carbon dioxide reduction reaction (CO2RR) due to its excellent electrocatalytic performance. However, the design of highly active metal-carbon matrix catalyst towards CO2RR using natural biomass and cheap chemical precursors is still under challenge. Herein, a self-assembly strategy, along with CO2 gas as acidifying agent, to fabricate silk fibroin (SF) derived carbon aerogels (CA) combining trace copper nanoparticles (SF-Cu/CA) is developed. Zinc nitrate was introduced as a pore-forming agent to further optimize the pore structure of the as-prepared catalysts to form SF-Cu/CA-1. The rich mesoporous structure and unique constitute of SF-Cu/CA-1 is conducive to exposed numerous active sites, fast electron transfer rate, and the desorption of *CO intermediate, thus leading to the electrocatalytic CO2RR of SF-Cu/CA-1 catalyst with an excellent current density of 29.4 mA cm-2, Faraday efficiency of 83.06% towards carbon monoxide (CO), high the ratio value of CO/H2 (19.58), and a long-term stability over a 10-hour period. This performance is superior to that of SF-Cu/CA catalyst (13.0 mA cm-2, FECO=58.43%, CO/H2 = 2.16). This work not only offers a novel strategy using natural biomass and cheap chemicals to build metal-carbon matrix catalyst for electrocatalytic CO2-to-CO conversion, but also is expected to promote the industrial-scale implementations of CO2 electroreduction.
Collapse
Affiliation(s)
- Shanhe Gong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xinxin Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Wenbo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Daniel Kobina Sam
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Runqing Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Jun Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chundu Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China.
| |
Collapse
|
12
|
Wang M, Leff AC, Li Y, Woehl TJ. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis. ACS NANO 2021; 15:2578-2588. [PMID: 33496576 DOI: 10.1021/acsnano.0c07131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid-phase transmission electron microscopy (LP-TEM) enables direct visualization of nanocrystal formation mechanisms that can inform discovery of design rules for nanocrystal synthesis, but it remains unclear whether the salient flask synthesis chemistry is preserved under electron beam irradiation during LP-TEM. Here, we demonstrate controlled in situ LP-TEM synthesis of alloyed AuCu nanocrystals while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes. Ex situ flask synthesis experiments formed alloyed nanocrystals containing on average 70 atomic% Au using heteronuclear metal thiolate complexes as a precursor, while gold-rich alloys with nearly no copper formed in their absence. Systematic dose rate-controlled in situ LP-TEM synthesis experiments established a range of electron beam synthesis conditions that formed alloyed AuCu nanocrystals that had statistically indistinguishable alloy composition, aggregation state, and particle size distribution shape compared to ex situ flask synthesis, indicating the flask synthesis chemistry was preserved under these conditions. Reaction kinetic simulations of radical-ligand reactions revealed that polymer capping ligands acted as effective hydroxyl radical scavengers during LP-TEM synthesis and prevented oxidation of metal thiolate complexes at low dose rates. Our results revealed a key role of the capping ligands aside from their well-known functions, which was to prevent copper oxidation and facilitate formation of prenucleation cluster intermediates via formation of metal thiolate complexes. This work demonstrates that complex ion precursor chemistry can be maintained during LP-TEM imaging, enabling probing nonclassical nanocrystal formation mechanisms with LP-TEM under reaction conditions representative of ex situ flask synthesis.
Collapse
Affiliation(s)
- Mei Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Asher C Leff
- Sensors and Electron Devices Directorate, Combat Capabilities Development Command, United States Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, LLC, Wall Township, New Jersey 07727, United States
| | - Yue Li
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
Wang W, Lu R, Xiao X, Gong S, Sam DK, Liu B, Lv X. CuAg nanoparticle/carbon aerogel for electrochemical CO 2 reduction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03540a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A small sized CuAg heterostructure anchored by a silk fibroin-derived carbon aerogel exhibits electrocatalytic CO2-to-CO conversion.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runqing Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xinxin Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Daniel Kobina Sam
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|