1
|
Yoon SJ, Lee SJ, Kim MH, Park HA, Kang HS, Bae SY, Jeon IY. Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2613. [PMID: 37764642 PMCID: PMC10535723 DOI: 10.3390/nano13182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance. As a result, non-precious transition metals have emerged as promising candidates to replace their more expensive counterparts in various applications. This review focuses on recently developed transition metal phosphides (TMPs) electrocatalysts for the HER in alkaline media due to the cooperative effect between the phosphorus and transition metals. Finally, we discuss the challenges of TMPs for HER.
Collapse
Affiliation(s)
| | | | | | | | | | - Seo-Yoon Bae
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| | - In-Yup Jeon
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| |
Collapse
|
2
|
Flis‐Kabulska I, Flis J. Anodic Etching of Amorphous Ni
81
P
19
Alloy in Hot Concentrated Chloride Solution for Enhanced Hydrogen Evolution in Alkaline Water Electrolysis. ChemElectroChem 2023. [DOI: 10.1002/celc.202201036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Iwona Flis‐Kabulska
- Faculty of Mathematics and Natural Sciences. School of Exact Sciences Cardinal Stefan Wyszynski University in Warsaw Wóycickiego 1/3 building 21 01-938 Warszawa Poland
| | - Janusz Flis
- Institute of Physical Chemistry of the Polish Academy of Sciences Kasprzaka 44/52 01-224 Warszawa Poland
| |
Collapse
|
3
|
Barua S, Balčiūnaitė A, Vaičiūnienė J, Tamašauskaitė-Tamašiūnaitė L, Norkus E. Three-Dimensional Au(NiMo)/Ti Catalysts for Efficient Hydrogen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7901. [PMID: 36431387 PMCID: PMC9693304 DOI: 10.3390/ma15227901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In this study, NiMo catalysts that have different metal loadings in the range of ca. 28-106 µg cm-2 were electrodeposited on the Ti substrate followed by their decoration with a very low amount of Au-crystallites in the range of ca. 1-5 µg cm-2 using the galvanic displacement method. The catalytic performance for hydrogen evolution reaction (HER) was evaluated on the NiMo/Ti and Au(NiMo)/Ti catalysts in an alkaline medium. It was found that among the investigated NiMo/Ti and Au(NiMo)/Ti catalysts, the Au(NiMo)/Ti-3 catalyst with the Au loading of 5.2 µg cm-2 gives the lowest overpotential of 252 mV for the HER to reach a current density of 10 mA·cm-2. The current densities for HER increase ca. 1.1-2.7 and ca. 1.1-2.2 times on the NiMo/Ti and Au(NiMo)/Ti catalysts, respectively, at -0.424 V, with an increase in temperature from 25 °C to 75 °C.
Collapse
|
4
|
Gao M, Gao P, Lei T, Ouyang C, Wu X, Wu A, Du Y. PANI-coated porous FeP sheets as bifunctional electrocatalyst for water splitting. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kim J, Kim H, Han GH, Hong S, Park J, Bang J, Kim SY, Ahn SH. Electrodeposition: An efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. EXPLORATION (BEIJING, CHINA) 2022; 2:20210077. [PMID: 37323706 PMCID: PMC10190982 DOI: 10.1002/exp.20210077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 06/17/2023]
Abstract
The development of electrocatalysts for energy conversion systems is essential for alleviating environmental problems and producing useful energy sources as alternatives to fossil fuels. Improving the catalytic performance and stability of electrocatalysts is a major challenge in the development of energy conversion systems. Moreover, understanding their electrode structure is important for enhancing the energy efficiency. Recently, binder-free self-supported electrodes have been investigated because the seamless contact between the electrocatalyst and substrate minimizes the contact resistance as well as facilitates fast charge transfer at the catalyst/substrate interface and high catalyst utilization. Electrodeposition is an effective and facile method for fabricating self-supported electrodes in aqueous solutions under mild conditions. Facile fabrication without a polymer binder and controlability of the compositional and morphological properties of the electrocatalyst make electrodeposition methods suitable for enhancing the performance of energy conversion systems. Herein, we summarize recent research on self-supported electrodes fabricated by electrodeposition for energy conversion reactions, particularly focusing on cathodic reactions of electrolyzer system such as hydrogen evolution, electrochemical CO2 reduction, and electrochemical N2 reduction reactions. The deposition conditions, morphological and compositional properties, and catalytic performance of the electrocatalyst are reviewed. Finally, the prospective directions of electrocatalyst development for energy conversion systems are discussed.
Collapse
Affiliation(s)
- Junhyeong Kim
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Hyunki Kim
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Gyeong Ho Han
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Seokjin Hong
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Juhae Park
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Junbeom Bang
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| |
Collapse
|
6
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
7
|
Flis‐Kabulska I, Gajek A, Flis J. Understanding the Enhancement of Electrocatalytic Activity toward Hydrogen Evolution in Alkaline Water Splitting by Anodically Formed Oxides on Ni and C‐containing Ni. ChemElectroChem 2021. [DOI: 10.1002/celc.202100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Iwona Flis‐Kabulska
- Faculty of Mathematics and Natural Sciences. School of Exact Sciences Cardinal Stefan Wyszynski University in Warsaw Wóycickiego 1/3 building 21 01-938 Warszawa Poland
| | - Arkadiusz Gajek
- Institute of Physical Chemistry of the Polish Academy of Sciences Kasprzaka 44/52 01-224 Warszawa Poland
| | - Janusz Flis
- Institute of Physical Chemistry of the Polish Academy of Sciences Kasprzaka 44/52 01-224 Warszawa Poland
| |
Collapse
|
8
|
Kan S, Xu M, Feng W, Wu Y, Du C, Gao X, Wu YA, Liu H. Tuning Overall Water Splitting on an Electrodeposited NiCoFeP Films. ChemElectroChem 2021. [DOI: 10.1002/celc.202001501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuting Kan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering Central South University Changsha 410083 PR China
| | - Mengying Xu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering Central South University Changsha 410083 PR China
| | - Wenshuai Feng
- School of Physics and Electronics Central South University Changsha 410083 PR China
| | - Yufeng Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering Central South University Changsha 410083 PR China
| | - Cheng Du
- Department of Mechanical and Mechatronics Engineering Waterloo Institute of Nanotechnology University of Waterloo Waterloo ON, N2 L 3G1 Canada
| | - Xiaohui Gao
- School of Physics and Electronics Central South University Changsha 410083 PR China
| | - Yimin A. Wu
- Department of Mechanical and Mechatronics Engineering Waterloo Institute of Nanotechnology University of Waterloo Waterloo ON, N2 L 3G1 Canada
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering Central South University Changsha 410083 PR China
| |
Collapse
|
9
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|