1
|
Orellana J, Araya-Hermosilla E, Pucci A, Araya-Hermosilla R. Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites. Polymers (Basel) 2024; 16:2273. [PMID: 39204493 PMCID: PMC11359776 DOI: 10.3390/polym16162273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Exfoliated graphite (ExG) embedded in a polymeric matrix represents an accessible, cost-effective, and sustainable method for generating nanosized graphite-based polymer composites with multifunctional properties. This review article analyzes diverse methods currently used to exfoliate graphite into graphite nanoplatelets, few-layer graphene, and polymer-assisted graphene. It also explores engineered methods for small-scale pilot production of polymer nanocomposites. It highlights the chemistry involved during the graphite intercalation and exfoliation process, particularly emphasizing the interfacial interactions related to steric repulsion forces, van der Waals forces, hydrogen bonds, π-π stacking, and covalent bonds. These interactions promote the dispersion and stabilization of the graphite derivative structures in polymeric matrices. Finally, it compares the enhanced properties of nanocomposites, such as increased thermal and electrical conductivity and electromagnetic interference (EMI) shielding applications, with those of neat polymer materials.
Collapse
Affiliation(s)
- Jaime Orellana
- Programa de Doctorado en Ciencias de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Esteban Araya-Hermosilla
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 851, Box, Santiago 8370456, Chile
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Rodrigo Araya-Hermosilla
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8370456, Chile
| |
Collapse
|
2
|
Boateng E, Thiruppathi AR, Hung CK, Chow D, Sridhar D, Chen A. Functionalization of Graphene-based Nanomaterials for Energy and Hydrogen Storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Kandhasamy N, Preethi LK, Mani D, Walczak L, Mathews T, Venkatachalam R. RGO nanosheet wrapped β-phase NiCu 2S nanorods for advanced supercapacitor applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18546-18562. [PMID: 36215010 DOI: 10.1007/s11356-022-23359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A new integration strategy of transition metal sulfide with carbon-based materials is used to boost its catalytic property and electrochemical performances in supercapacitor application. Herein, crystalline reduced graphene oxide (rGO) wrapped ternary metal sulfide nanorod composites with different rGO ratios are synthesized using hydrothermal technique and are compared for their physical, chemical, and electrochemical performances. It is found that their properties are tuned by the weight ratios of rGO. The electrochemical investigations reveal that β-NiCu2S/rGO nanocomposite electrode with 0.15 wt.% of rGO is found to possess maximum specific capacitance of 1583 F g-1 at current density of 15 mA g-1 in aqueous electrolyte medium. The same electrode shows excellent cycling stability with capacitance retention of 89% after 5000 charging/discharging cycles. The reproducibility test performed on NiCu2S/rGO nanocomposite electrode with 0.15 wt.% of rGO indicates that it has high reproducible capacitive response and rate capability. Thus, the present work demonstrates that the β-NiCu2S/rGO nanocomposite can serve as a potential electrode material for developing supercapacitor energy storage system.
Collapse
Affiliation(s)
- Narthana Kandhasamy
- Centre for Nano Science and Nanotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, 637215, India
| | - Laguduva K Preethi
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 600119, India
| | - Devendiran Mani
- Central Instrumentation Laboratory, Vels Institute of Science Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600117, India
| | - Lukasz Walczak
- Science & Research Division, PREVAC Sp. Z O.O, 44-362, Rogow, Poland
| | - Tom Mathews
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, 603102, India
| | - Rajendran Venkatachalam
- Centre for Nano Science and Nanotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, 637215, India.
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, 641048, India.
| |
Collapse
|
4
|
Huo Y, Long Y, Yuan S, Toury B, Normand B, Fellah C, Roiban L, Benayoun S. Study of Molecular-Level Dispersion of Pristine Graphene in Aqueous Media via Polyvinyl Alcohol Coil Physisorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16046-16054. [PMID: 36516301 DOI: 10.1021/acs.langmuir.2c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene has been widely used as a nanofiller in advanced electronic devices and nanocomposite materials to achieve enhanced electronic, mechanical, and barrier properties. Adequate polymers play the role of the composite matrix and can assist in the liquid-phase exfoliation of pristine graphene without any heavy chemical modification and the detriment of the properties of graphene. This stabilization mechanism is generally attributed to the steric forces formed between the polymer-adsorbed adsorbent. However, the key influence of the polymer concentration on the maximum graphene content in the colloidal solutions is still unclear. In this study, three different molar weights of water-soluble polyvinyl alcohol (PVA) were used for graphene dispersion. The influence of the PVA concentration on the graphene dispersion was systematically studied. Based on Flory's theory, we first proposed a model to describe the polymer adsorption process in the graphene/PVA/water ternary system in the "dilute" regime and simulated the adsorption-free energy changes during this transformation. This model is in good agreement with the experimental results and explains the critical polymer concentration, Cc, allowing the optimization of the graphene/polymer ratio. This fundamental understanding of polymer physisorption on 2D materials provides a simple method for producing nanocomposites with controlled nanosheet/polymer ratios and structures, which are of great interest for energy devices and biomaterials.
Collapse
Affiliation(s)
- Ying Huo
- Laboratoire de Tribologie et Dynamique des Systèmes CNRS UMR 5513, Université de Lyon, École Centrale de Lyon, Lyon69130, France
- Laboratoire MATEIS CNRS UMR 5510, Université de Lyon, INSA-Lyon, Lyon69100, France
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université de Lyon, Université Lyon 1, Lyon69100, France
| | - Yun Long
- Laboratoire MATEIS CNRS UMR 5510, Université de Lyon, INSA-Lyon, Lyon69100, France
| | - Sheng Yuan
- Laboratoire MATEIS CNRS UMR 5510, Université de Lyon, INSA-Lyon, Lyon69100, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université de Lyon, Université Lyon 1, Lyon69100, France
| | - Bernard Normand
- Laboratoire MATEIS CNRS UMR 5510, Université de Lyon, INSA-Lyon, Lyon69100, France
| | - Clémentine Fellah
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement CNRS UMR 5276, Université de Lyon, Université Lyon 1, Lyon69100, France
| | - Lucian Roiban
- Laboratoire MATEIS CNRS UMR 5510, Université de Lyon, INSA-Lyon, Lyon69100, France
| | - Stéphane Benayoun
- Laboratoire de Tribologie et Dynamique des Systèmes CNRS UMR 5513, Université de Lyon, École Centrale de Lyon, Lyon69130, France
| |
Collapse
|
5
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|