1
|
He J, Yang L, Ruan X, Liu Z, Liao K, Duan Q, Zhan Y. Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review. Polymers (Basel) 2024; 16:2895. [PMID: 39458723 PMCID: PMC11511470 DOI: 10.3390/polym16202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Lithium-ion batteries (LIBs) have been widely applied in electronic communication, transportation, aerospace, and other fields, among which separators are vital for their electrochemical stability and safety. Electrospun polyvinylidene fluoride (PVDF)-based separators have a large specific surface area, high porosity, and remarkable thermal stability, which significantly enhances the electrochemistry and safety of LIBs. First, this paper reviewed recent research hotspots and processes of electrospun PVDF-based LIB separators; then, their pivotal parameters influencing morphology, structures, and properties of separators, especially in the process of electrospinning solution preparation, electrospinning process, and post-treatment methods were summarized. Finally, the challenges of PVDF-based LIB separators were proposed and discussed, which paved the way for the application of electrospun PVDF-based separators in LIBs and the development of LIBs with high electrochemistry and security.
Collapse
Affiliation(s)
- Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Lihong Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Xingzhe Ruan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Zechun Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Kezhang Liao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
| | - Yongzhong Zhan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| |
Collapse
|
2
|
Zhao H, Zhao G, Liu F, Xiang T, Zhou J, Li L. Realizing dendrite-free lithium deposition with three-dimensional soft-rigid nanofiber interlayers. J Colloid Interface Sci 2024; 666:131-140. [PMID: 38593648 DOI: 10.1016/j.jcis.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Lithium (Li) metal is regarded as the most desirable anode candidates for high-energy-density batteries by virtue of its lowest redox potential and ultrahigh theoretical specific capacity. However, uncontrollable Li dendritic growth, infinite volume variation and unstable solid electrolyte interface (SEI) ineluctably plague its commercialization process. Herein, the three-dimensional (3D) nanofiber functional layers with synergistic soft-rigid feature, consisting of tin oxide (SnO2)-anchored polyvinylidene fluoride (PVDF) nanofibers, are directly electrospun on copper current collector. This strategy can effectively regulate uniform Li deposition and strengthen SEI stability through the dual effect of physical accommodation and chemical ionic intervention. On the one hand, the nanofiber interlayers with excellent electrolyte affinity and well-distributed Li+ transport pathways can promote uniform Li+ flux distribution and large-size Li deposition. On the other hand, the rigid SnO2 contributes to reducing Li nucleation overpotential and stabilizing SEI layer assisted by its spontaneous reaction with Li. As a result, the smooth and dense Li deposition is achieved by such soft-rigid nanofiber interlayers, thereby extending the cycling life and improving the safety application of Li metal batteries. This work offers a new route for efficient protection of Li metal anodes and brings a new inspiration for developing high-energy-density Li metal batteries.
Collapse
Affiliation(s)
- Huijuan Zhao
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Guodong Zhao
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Fengquan Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Tianqi Xiang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Lin Li
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China; Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
3
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Zhu Y, Chen Z, Chen H, Fu X, Awuye DE, Yin X, Zhao Y. Breaking the Barrier: Strategies for Mitigating Shuttle Effect in Lithium-Sulfur Batteries Using Advanced Separators. Polymers (Basel) 2023; 15:3955. [PMID: 37836004 PMCID: PMC10575298 DOI: 10.3390/polym15193955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Lithium-sulfur (Li-S) batteries are considered one of the most promising energy storage systems due to their high theoretical capacity, high theoretical capacity density, and low cost. However, challenges such as poor conductivity of sulfur (S) elements in active materials, the "shuttle effect" caused by lithium polysulfide, and the growth of lithium dendrites impede the commercial development of Li-S batteries. As a crucial component of the battery, the separator plays a vital role in mitigating the shuttle effect caused by polysulfide. Traditional polypropylene, polyethylene, and polyimide separators are constrained by their inherent limitations, rendering them unsuitable for direct application in lithium-sulfur batteries. Therefore, there is an urgent need for the development of novel separators. This review summarizes the applications of different separator preparation methods and separator modification methods in lithium-sulfur batteries and analyzes their electrochemical performance.
Collapse
Affiliation(s)
- Yingbao Zhu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.Z.); (X.Y.); (Y.Z.)
| | - Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.Z.); (X.Y.); (Y.Z.)
| | - Hui Chen
- Jiangsu Zhongneng Polysilicon Technology Development Co., Ltd., Xuzhou 221000, China; (H.C.); (X.F.)
| | - Xuguang Fu
- Jiangsu Zhongneng Polysilicon Technology Development Co., Ltd., Xuzhou 221000, China; (H.C.); (X.F.)
| | - Desire Emefa Awuye
- Department of Minerals and Materials Engineering, University of Mines and Technology, Tarkwa 03123, Ghana;
| | - Xichen Yin
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.Z.); (X.Y.); (Y.Z.)
| | - Yixuan Zhao
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.Z.); (X.Y.); (Y.Z.)
| |
Collapse
|
5
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
6
|
Chiu LL, Chung SH. Electrochemically Stable Rechargeable Lithium–Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film. Polymers (Basel) 2023; 15:polym15061460. [PMID: 36987242 PMCID: PMC10057069 DOI: 10.3390/polym15061460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
The high theoretical charge-storage capacity and energy density of lithium–sulfur batteries make them a promising next-generation energy-storage system. However, liquid polysulfides are highly soluble in the electrolytes used in lithium–sulfur batteries, which results in irreversible loss of their active materials and rapid capacity degradation. In this study, we adopt the widely applied electrospinning method to fabricate an electrospun polyacrylonitrile film containing non-nanoporous fibers bearing continuous electrolyte tunnels and demonstrate that this serves as an effective separator in lithium–sulfur batteries. This polyacrylonitrile film exhibits high mechanical strength and supports a stable lithium stripping and plating reaction that persists for 1000 h, thereby protecting a lithium-metal electrode. The polyacrylonitrile film also enables a polysulfide cathode to attain high sulfur loadings (4–16 mg cm−2) and superior performance from C/20 to 1C with a long cycle life (200 cycles). The high reaction capability and stability of the polysulfide cathode result from the high polysulfide retention and smooth lithium-ion diffusion of the polyacrylonitrile film, which endows the lithium–sulfur cells with high areal capacities (7.0–8.6 mA·h cm−2) and energy densities (14.7–18.1 mW·h cm−2).
Collapse
Affiliation(s)
- Li-Ling Chiu
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
| | - Sheng-Heng Chung
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
- Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Kim A, Dash JK, Patel R. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. MEMBRANES 2023; 13:183. [PMID: 36837686 PMCID: PMC9962122 DOI: 10.3390/membranes13020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Lithium-Sulfur batteries (LSBs) are one of the most promising next-generation batteries to replace Li-ion batteries that power everything from small portable devices to large electric vehicles. LSBs boast a nearly five times higher theoretical capacity than Li-ion batteries due to sulfur's high theoretical capacity, and LSBs use abundant sulfur instead of rare metals as their cathodes. In order to make LSBs commercially viable, an LSB's separator must permit fast Li-ion diffusion while suppressing the migration of soluble lithium polysulfides (LiPSs). Polyolefin separators (commonly used in Li-ion batteries) fail to block LiPSs, have low thermal stability, poor mechanical strength, and weak electrolyte affinity. Novel nanofiber (NF) separators address the aforementioned shortcomings of polyolefin separators with intrinsically superior properties. Moreover, NF separators can easily be produced in large volumes, fine-tuned via facile electrospinning techniques, and modified with various additives. This review discusses the design principles and performance of LSBs with exemplary NF separators. The benefits of using various polymers and the effects of different polymer modifications are analyzed. We also discuss the conversion of polymer NFs into carbon NFs (CNFs) and their effects on rate capability and thermal stability. Finally, common and promising modifiers for NF separators, including carbon, metal oxide, and metal-organic framework (MOF), are examined. We highlight the underlying properties of the composite NF separators that enhance the capacity, cyclability, and resilience of LSBs.
Collapse
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY 10003, USA
| | - Jatis Kumar Dash
- Department of Physics, SRM University-AP, Amaravati 522502, India
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
8
|
Zhu Y, Liu C, Yang Y, Li Y, Wu QH. A Novel Design of Inorganic-Polymer Gel Electrolyte/Anode Interphase in Quasi-Solid-State Lithium-Ion Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Mechanically and thermally robust microporous copolymer separators for lithium ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Carbon Nanotube-Modified Nickel Hydroxide as Cathode Materials for High-Performance Li-S Batteries. NANOMATERIALS 2022; 12:nano12050886. [PMID: 35269373 PMCID: PMC8912414 DOI: 10.3390/nano12050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023]
Abstract
The advantages of high energy density and low cost make lithium–sulfur batteries one of the most promising candidates for next-generation energy storage systems. However, the electrical insulativity of sulfur and the serious shuttle effect of lithium polysulfides (LiPSs) still impedes its further development. In this regard, a uniform hollow mesoporous Ni(OH)2@CNT microsphere was developed to address these issues. The SEM images show the Ni(OH)2 delivers an average size of about 5 μm, which is composed of nanosheets. The designed Ni(OH)2@CNT contains transition metal cations and interlayer anions, featuring the unique 3D spheroidal flower structure, decent porosity, and large surface area, which is highly conducive to conversion systems and electrochemical energy storage. As a result, the as-fabricated Li-S battery delivers the reversible capacity of 652 mAh g−1 after 400 cycles, demonstrating excellent capacity retention with a low average capacity loss of only 0.081% per cycle at 1 C. This work has shown that the Ni(OH)2@CNT sulfur host prepared by hydrothermal embraces delivers strong physical absorption as well as chemical affinity.
Collapse
|
11
|
Flower-like heterostructured MoP–MoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance Li–S batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Efficient capture and conversion of polysulfides by zinc protoporphyrin framework-embedded triple-layer nanofiber separator for advanced Li-S batteries. J Colloid Interface Sci 2021; 609:43-53. [PMID: 34890950 DOI: 10.1016/j.jcis.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
The practical application of Lithium-sulfur (Li-S) batteries is significantly inhibited by (i) the notable 'shuttle effect' of lithium polysulfides (LiPS), (ii) the corrosion of the lithium interface, and (iii) the sluggish redox reaction kinetics. The functional separator in the Li-S battery has the potential to provide the perfect solution to these problems. Herein a triple-layer multifunctional PVDF-based nanofiber separator, which contains GoTiN/PVDF layer on the top and bottom and ZnTPP/PVDF layer on the middle, is designed. The polarity and porous structure of this multifunctional separator can greatly improve the wettability of electrolytes and enhance the transportation of Li+. With the zinc-based porphyrin framework (ZnTPP) structure, this separator has a strong chemisorption and LiPS conversion ability, which greatly prevent the 'shuttle effect'. Consequently, the designed multilayer separator showed excellent electrochemical performance. As a result, the cell with GoTiN@ZnTPP@GoTiN nanofiber membrane displayed an initial discharge capacity of 1180 mAh/g with a benign capacity retention of 65.9% at 0.5C and high coulombic efficiency of more than 98.5% after 100 cycles. Even at 2C, it can still release a capacity of 798 mAh/g. Moreover, the remarkable capacity of 591 mAh/g could be achieved with a high sulfur load of 5.76 mg/cm2 under a current density of 0.1C. Based on these merits, this novel and scalable multifunctional separator is a promising candidate to replace the conventional PP separator for advanced Li-S batteries to deal with various challenges.
Collapse
|
13
|
Wang X, Hao Y, Wang G, Deng N, Wei L, Yang Q, Cheng B, Kang W. YF 3/CoF 3 co-doped 1D carbon nanofibers with dual functions of lithium polysulfudes adsorption and efficient catalytic activity as a cathode for high-performance Li-S batteries. J Colloid Interface Sci 2021; 607:922-932. [PMID: 34571313 DOI: 10.1016/j.jcis.2021.09.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022]
Abstract
Lithium-sulfur (Li-S) batteries have attracted extensive attention in the field of energy storage due to their high energy density and low cost. However, conundrums such as severe polarization, poor cyclic performance originating from shuttle effect of lithium polysulfides and sluggish sulfur redox kinetics are stumbling blocks for their practical application. Herein, a novel sulfur cathode integrating sulfur and polyvinylpyrrolidone(PVP)-derived N-doped porous carbon nanofibers (PCNFs) with embedded CoF3 and YF3 nanoparticles are designed and prepared though the electrostatic blowing technology and carbonization process. The unique flexible PCNFs with embedded polar CoF3 and YF3 nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Moreover, the uniform distribution of YF3/CoF3 nanoparticles also can expose more binding active sites to lithium polysulfide and present more catalytic sites to the greatest extent. Therefore, the assembled cells with the prepared cathode exhibited stable performances with an outstanding initial capacity of 1055.2 mAh g-1 and an extended cycling stability of 0.029% per cycle during the 300 cycles at 0.5C. Even at a high sulfur loading of 2.1 mg cm-2, The YF3/CoF3 doped-PCNFs exhibited a high discharge specific capacity of 1038 mAh g-1, and the decay rate is also as low as 0.05% over 1000 cycles. This work shares a convenient and safe strategy for the synthesis of multi-dimension, dual-functional and stable superstructure electrode for advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Gang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Liying Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qi Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|